Total domination in maximal outerplanar graphs

Michael Dorfling ${ }^{\text {a }}$, Johannes H. Hattingh ${ }^{\text {a,b,*, Elizabeth Jonck }}{ }^{\text {c }}$
${ }^{\text {a }}$ Department of Pure and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa
${ }^{\mathrm{b}}$ Department of Mathematics, East Carolina University, Greenville, NC 27858, USA
${ }^{\text {c }}$ School of Mathematics, University of the Witwatersrand, Johannesburg, South Africa

ARTICLE INFO

Article history:

Received 15 March 2016
Received in revised form 24 August 2016
Accepted 23 October 2016
Available online 16 November 2016

Keywords:

Outerplanar graph
Domination
Total domination

Abstract

We show that the total domination number of a maximal outerplanar graph G is bounded above by $\frac{n+k}{3}$, where n is the order of G and k is the number of vertices of degree 2 . For $k>\frac{n}{3}$, a better bound is given by $\frac{2(n-k)}{3}$. For $k>\frac{n}{3}$, we improve the upper bound of $\frac{n+k}{4}$ on the usual domination number.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The graphs we consider in this paper are undirected and simple. Given a graph $G=(V, E)$ with $v \in V$, the open neighborhood of v, denoted $N(v)$, is defined as the set of all vertices adjacent to v. The closed neighborhood of v, denoted $N[v]$, is the union of $N(v)$ and $\{v\}$. A set of vertices D is a dominating set if for every $u \in V$, there exists $v \in D$ such that $u \in N[v]$. The domination number of a graph G, denoted by $\gamma(G)$, is the minimum size of a dominating set of vertices in G. If, for every $u \in V$, there is a $v \in D$ such that $u \in N(v)$, then D is a total dominating set of G. The minimum cardinality of such a set is denoted by $\gamma_{t}(G)$.

The question of determining the domination number for a graph is a well known NP-hard problem. Bounds for the domination numbers have been found for special classes of graphs [3]. Planar graphs have been studied in [5,6].

A planar graph is outerplanar if it can be embedded in the plane so that all its vertices lie on the same face; hereafter we assume this face to be exterior or the outer face. An outerplanar graph is nonseparable if it has a plane representation with a hamiltonian face. For nonseparable outerplanar graphs the hamiltonian face is unique [8]. In [7] it was proved that if G is a nonseparable outerplanar graph, then

$$
\left\lceil\frac{2|V|-|E|}{3}\right\rceil \leq \gamma(G) \leq\left\lceil\frac{|V|}{3}\right\rceil .
$$

Note that a maximal outerplanar graph is nonseparable. Campos and Wakabayashi showed in [1] that if G is an n-vertex maximal outerplanar graph, then $\gamma(G) \leq \frac{n+k}{4}$ where k is the number of vertices of degree 2 in G. By using a simple coloring method, Tokunaga proved the same result independently in [9]. Li, Zhu, Shao and Xu (in [4]) improved the latter result by showing that $\gamma(G) \leq \frac{n+k}{4}$, where k is the number of pairs of consecutive 2-degree vertices with distance at least 3 on the outer cycle.

[^0]In this paper we show that if G is a maximal outerplanar graph of order n with k vertices of degree 2 , then $\gamma_{t}(G) \leq \frac{n+k}{3}$. We further show that these upper bounds on γ and γ_{t} can be improved if $k>\frac{n}{3}$.

Some terminology we will use throughout this paper is: A t-vertex is a vertex of degree t. Given an embedding of an outerplanar graph, an outer edge will be an edge on the outer face. Moreover, $d(u, v)$ will denote the distance between the vertices u and v. For any undefined notation or terminology the reader is referred to [2].

2. Total domination

We now present the proof of our main result. The reader can check that for $k>\frac{n}{3}$, it holds that $\frac{2(n-k)}{3}$ is less than $\frac{n+k}{3}$. We observe that every maximal outerplanar graph has at least two but not more than $n / 2$ vertices of degree 2 , i.e., $2 \leq k \leq n / 2$.

Theorem 1. If G is a maximal outerplanar graph of order $n \geq 3$ with k vertices of degree 2 , then

$$
\gamma_{t}(G) \leq\left\{\begin{array}{cl}
\frac{2(n-k)}{3}, & \text { if } k>\frac{n}{3} \text { and } n \geq 5 \\
\frac{n+k}{3}, & \text { otherwise. }
\end{array}\right.
$$

Proof. Both bounds hold for all possible k, but which is the better bound depends on k. We first prove that $\gamma_{t}(G) \leq \frac{n+k}{3}$ for all such G. The proof is by induction on n. If $n=3$ the result clearly holds, so let G be a maximal outerplanar graph of order $n>3$ with k vertices of degree 2 and suppose that for any maximal outerplanar graph G^{\prime} of order $n^{\prime}<n$ with k^{\prime} vertices of degree 2 we have $\gamma_{t}\left(G^{\prime}\right) \leq \frac{n^{\prime}+k^{\prime}}{3}$.

Claim 1. We may assume that if v is any 2-vertex, then the neighbors of v have degrees 3 and 4 , respectively.
Let u and w be the neighbors of v. Since v has degree 2 and G is maximal outerplanar, u and w are adjacent. Since $n>3$, they have a common neighbor $x \neq v$.

Suppose u and w both have degree at least 4. Let $y \neq v, x$ be such that $u y$ is an outer edge, let $z \neq v, x$ be such that $w z$ is an outer edge, and note that x has degree at least 4. Let G^{\prime} be obtained from G by removing v and contracting edge $u w$ to the vertex u^{\prime}. Then G^{\prime} is maximal outerplanar, G^{\prime} has two fewer vertices than G and G^{\prime} has one 2 -vertex less than G, as both u^{\prime} and x have degrees at least 3 in G^{\prime}. By the inductive hypothesis we have $\gamma_{t}\left(G^{\prime}\right) \leq \frac{n-2+k-1}{3}=\frac{n+k}{3}-1$. Let D^{\prime} be such a total dominating set of G^{\prime}. If $u^{\prime} \in D^{\prime}$, then $D^{\prime}-\left\{u^{\prime}\right\} \cup\{u, w\}$ totally dominates G and has order at most $\frac{n+k}{3}$. So suppose $u^{\prime} \notin D^{\prime}$, and let $t \in D^{\prime}$ be a vertex adjacent to u^{\prime} in G^{\prime}. Then $D=\left\{\begin{array}{ll}D^{\prime} \cup\{u\} & \text { if } t \text { is adjacent to } u \text { in } G \\ D^{\prime} \cup\{w\} & \text { if } t \text { is adjacent to } w \text { in } G\end{array}\right\}$ is a total dominating set of G and has cardinality at most $\frac{n+k}{3}$.

One of u and w, say w, therefore has degree 3. If u also has degree 3 then $G=K_{4}-e$ and the result holds. If u has degree 4 we are done, so suppose that u has degree at least 5 .

Now if x has degree 3 then, with y as before, x has a neighbor $a \neq u, w, y$ where $a u \in E(G)$. Then we let $G^{\prime}=G-v$ and consider any total dominating set D^{\prime} of G^{\prime} of cardinality $\frac{n-1+k}{3}$. If u or w is in D^{\prime}, then D^{\prime} also totally dominates G. If not, since w and x must be dominated by D^{\prime}, we must have $x \in D^{\prime}$ and $a \in D^{\prime}$. But then $D^{\prime}-\{x\} \cup\{u\}$ totally dominates G.

Therefore x has degree at least 4. Now let $G^{\prime}=G-\{v, w\}$. No 2-vertex is created while one is removed. Therefore $\gamma_{t}\left(G^{\prime}\right) \leq \frac{n+k}{3}-1$ and any such total dominating set D^{\prime} can be extended to a total dominating set of G by adding u if $u \notin D^{\prime}$.

Note that the vertices x and y in the proof above must therefore be adjacent by maximality, given that u has degree 4 .
Any maximal outerplanar graph H can be associated with a tree T with maximum degree at most 3 , the vertices of which correspond to triangles of H and two vertices of T being adjacent when the corresponding triangles in H have a common edge. For the remainder of the paper, we let T be the tree associated with G. Note that T does not uniquely determine G but contains useful information about the structure of G.

Claim 2. We may assume that every leaf of T is at distance at most 4 from a 3 -vertex of T.
Suppose v is a leaf of T with no 3 -vertex at distance at most 4 . Using Claim 1 it follows that G is isomorphic to one of the graphs G_{1} or G_{2} of Fig. 1 (here the squares are to be triangulated arbitrarily and in both cases only the vertices x, y and z possibly have neighbors not shown) or $n \leq 7$. In the latter case G is a subgraph of $H-y$ where H is isomorphic to one of the graphs G_{1} or G_{2} of Fig. 1 where none of the vertices in $\{x, y, z\}$ have additional neighbors and the result is easily checked.

In both cases of Fig. 1, let G^{\prime} be obtained from G by removing all vertices shown except x, y and z.
First consider the case when $\operatorname{deg}_{G^{\prime}}(x) \geq 3$ and $\operatorname{deg}_{G^{\prime}}(z) \geq 3$. Then G^{\prime} is maximal outerplanar, G^{\prime} has five fewer vertices than G and G^{\prime} has one 2 -vertex less than G. By the inductive hypothesis, G^{\prime} has a total dominating set of cardinality $\frac{n-5+k-1}{3}=\frac{n+k}{3}-2$. Then $D=\left\{\begin{array}{ll}D^{\prime} \cup\{u, w\} & \text { if } G \cong G_{1} \\ D^{\prime} \cup\{x, w\} & \text { if } G \cong G_{2}\end{array}\right\}$ is a total dominating set of G and has cardinality at most $\frac{n+k}{3}$.

If $\operatorname{deg}_{G^{\prime}}(x)=\operatorname{deg}_{G^{\prime}}(z)=2$, then G is isomorphic to either G_{1} or G_{2} (with none of the vertices in $\{x, y, z\}$ having additional neighbors) and so $\gamma_{t}(G) \leq 3 \leq \frac{8+2}{3}=\frac{n+k}{3}$.

https://daneshyari.com/en/article/4949758

Download Persian Version:
https://daneshyari.com/article/4949758

Daneshyari.com

[^0]: * Corresponding author at: Department of Mathematics, East Carolina University, Greenville, NC 27858, USA.

 E-mail addresses: mdorfling@uj.ac.za (M. Dorfling), hattinghj@ecu.edu (J.H. Hattingh), Betsie.Jonck@wits.ac.za (E. Jonck).

