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a b s t r a c t

In the Red–Blue Dominating Set problem, we are given a bipartite graph G = (VB ∪ VR, E)
and an integer k, and askedwhether G has a subset D ⊆ VB of at most k ‘‘blue’’ vertices such
that each ‘‘red’’ vertex fromVR is adjacent to a vertex inD.Weprovide the first explicit linear
kernel for this problem on planar graphs, of size at most 43k.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Motivation. The field of parameterized complexity (see [7,8,18]) deals with algorithms for decision problems whose
instances consist of a pair (x, k), where k is knownas the parameter. A fundamental concept in this area is that of kernelization.
A kernelization algorithm, or kernel, for a parameterized problem takes an instance (x, k) of the problem and, in time
polynomial in |x| + k, outputs an equivalent instance (x′, k′) such that |x′

|, k′
≤ g(k) for some function g . The function

g is called the size of the kernel and may be viewed as a measure of the ‘‘compressibility’’ of a problem using polynomial-
time preprocessing rules. A natural problem in this context is to find polynomial or linear kernels for problems that admit
such kernelization algorithms.

A celebrated result in this area is the linear kernel forDominating Set on planar graphs by Alber et al. [2], which gave rise
to an explosion of (meta-)results on linear kernels on planar graphs [14] and other sparse graph classes [3,9,15]. Although
of great theoretical importance, these meta-theorems have two important drawbacks from a practical point of view. On
the one hand, these results rely on a problem property called Finite Integer Index, which guarantees the existence of a linear
kernel, but nowadays it is still not clear how and when such a kernel can be effectively constructed. On the other hand,
at the price of generality one cannot hope that general results of this type may directly provide explicit reduction rules
and small constants for particular graph problems. Summarizing, as mentioned explicitly by Bodlaender et al. [3], these
meta-theorems provide simple criteria to decide whether a problem admits a linear kernel on a graph class, but finding
linear kernels with reasonably small constant factors for concrete problems remains a worthy investigation topic.

✩ This work was supported by the ANR project AGAPE (ANR-09-BLAN-0159) and the Languedoc-Roussillon Project ‘‘Chercheur d’avenir’’ KERNEL. A
preliminary short version of this work appeared in the Proceedings of the 12th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, pages
117–120, Enschede, Netherlands, May 21–23, 2013.
∗ Corresponding author.

E-mail addresses: valentin.garnero@lirmm.fr (V. Garnero), ignasi.sau@lirmm.fr (I. Sau), sedthilk@thilikos.info (D.M. Thilikos).

http://dx.doi.org/10.1016/j.dam.2016.09.045
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.09.045
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2016.09.045&domain=pdf
mailto:valentin.garnero@lirmm.fr
mailto:ignasi.sau@lirmm.fr
mailto:sedthilk@thilikos.info
http://dx.doi.org/10.1016/j.dam.2016.09.045


V. Garnero et al. / Discrete Applied Mathematics 217 (2017) 536–547 537

Our result. In this article we follow this research avenue and focus on the Red–Blue Dominating Set problem (RBDS for
short) on planar graphs. In the Red–Blue Dominating Set problem, we are given a bipartite1 graph G = (VB ∪ VR, E) and an
integer k, and askedwhetherGhas a subsetD ⊆ VB of atmost k ‘‘blue’’ vertices such that each ‘‘red’’ vertex fromVR is adjacent
to a vertex in D. This problem appeared in the context of the European railroad network [20]. From a (classical) complexity
point of view, finding a red–blue dominating set (or rbds for short) of minimum size is NP-hard on planar graphs [1]. From a
parameterized complexity perspective, RBDS parameterized by the size of the solution isW [2]-complete on general graphs
and FPT on planar graphs [7]. It is worth mentioning that RBDS plays an important role in the theory of non-existence of
polynomial kernels for parameterized problems [6].

The fact that RBDS involves a coloring of the vertices of the input graph makes it unclear how to make the problem fit
into the general frameworks of [3,9,14,15]. In this article we provide the first explicit (and quite simple) polynomial-time
data reduction rules for Red–Blue Dominating Set on planar graphs, which lead to a linear kernel for the problem.

Theorem 1. Red–Blue Dominating Set parameterized by the solution size has a linear kernel on planar graphs. More precisely,
there exists a polynomial-time algorithm that for each planar instance (G, k), either correctly reports that (G, k) is a No-instance,
or returns an equivalence instance (G′, k′) such that k′

≤ k and |V (G′)| ≤ 43 · k′.

This result complements several explicit linear kernels on planar graphs for other domination problems such as
Dominating Set [2], Edge Dominating Set [14,19], Efficient Dominating Set [14], Connected Dominating Set [13,17],
or Total Dominating Set [12]. It is worth mentioning that our constant is considerably smaller than most of the constants
provided by these results. Since one can easily reduce the Face Cover problem on a planar graph to RBDS (without changing
the parameter),2 the result of Theorem 1 also provides a linear bikernel for Face Cover (i.e., a polynomial-time algorithm
that given an input of Face Cover, outputs an equivalent instance of RBDSwith a graph whose size is linear in k). To the best
of our knowledge, the best existing kernel for Face Cover is quadratic [16]. Our techniques are much inspired by those of
Alber et al. [2] for Dominating Set, although our reduction rules and analysis are slightly simpler. We start by describing
in Section 2 our reduction rules for Red–Blue Dominating Set when the input graph is embedded in the plane, and in
Section 3 we prove that the size of a reduced plane Yes-instance is linear in the size of the desired red–blue dominating set,
thus proving Theorem 1. Finally, we conclude with some directions for further research in Section 4.

2. Reduction rules

In this section we propose reduction rules for Red–Blue Dominating Set, which are largely inspired by the rules that
yielded the first linear kernel for Dominating Set on planar graphs [2]. The idea is to either replace the neighborhood of
some blue vertices by appropriate gadgets, or to remove some blue vertices and their neighborhood when we can assume
that these blue vertices belong to the dominating set. We would like to point out that our rules have also some points in
common with the ones for the current best kernel for Dominating Set [4]. In Section 2.1 we present two easy elementary
rules that turn out to be helpful in simplifying the instance, and then in Sections 2.2 and 2.3 we present the rules for a single
vertex and a pair of vertices, respectively.

Before starting with the reduction rules, we need a definition.

Definition 1. We say that a graph G is reduced under a set of rules if either none of these rules can by applied to G, or the
application of any of them creates a graph isomorphic to G.

With slight abuse of notation, we simply say that a graph is reduced if it reduced under the whole set of reduction rules
that we will define, namely Rules 1, 2, 3, and 4.

We would like to point out that the above definition differs from the usual definition of reduced graph in the literature,
which states that a graph is reduced if the corresponding reduction rules cannot be applied anymore. We diverge from this
definition because, for convenience, we will define reduction rules that could be applied ad infinitum to the input graph,
such as Case 2 of Rule 4 defined in Section 2.3. For algorithmic purposes, the reduction rules that we will define are all local
and concern the neighborhood of at most 2 vertices, which is replaced with gadgets of constant size. Therefore, in order to
know when a graph is reduced (see Definition 1), the fact whether the original and the modified graph are isomorphic or
not can be easily checked locally in constant time.

2.1. Elementary rules

The following two elementary rules enable us to simplify an instance of RBDS. We would like to point out that similar
rules have been provided by Weihe [20] in a more applied setting. We first need the definition of neighborhood.

1 In fact, this assumption is not necessary, as if the input graph G is not bipartite, we can safely remove all edges between vertices of the same color.
2 Just consider the radial graph corresponding to the input graph G and its dual G∗ , and color the vertices of G (resp. G∗) as red (resp. blue).
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