On weight choosabilities of graphs with bounded maximum average degree

Jakub Przybyło ${ }^{\text {a,* }}$, André Raspaud ${ }^{\text {b }}$, Mariusz Woźniak ${ }^{\text {a }}$
${ }^{\text {a }}$ AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
${ }^{\text {b }}$ LaBRI, Universite de Bordeaux, 351, Cours de la Liberation, 33405 Talence Cedex, France

ARTICLE INFO

Article history:

Received 18 February 2015
Received in revised form 23 September 2016
Accepted 27 September 2016
Available online 20 October 2016

Keywords:

1-2-3 Conjecture
1-2-Conjecture
3-edge-weight choosability
2-total weight choosability
Combinatorial Nullstellensatz
Discharging method
Maximum average degree

Abstract

The well known 1-2-3-Conjecture asserts that every connected graph G of order at least three can be edge-coloured with integers $1,2,3$ so that the sums of colours met by adjacent vertices are distinct in G. The same is believed to hold if instead of edge colourings we consider total colourings assigning 1 or 2 to every vertex and edge of a given graphthis time the colour of every vertex is counted in its corresponding sum. We consider list extensions of the both concepts, where every edge (and vertex) is assigned a set of k positive integers, i.e., its potential colours, and regardless of this list assignment we wish to be able to construct a colouring from these lists so that the adjacent vertices are distinguished by their corresponding sums. We prove that if the maximum average degree of the graph G is smaller than $\frac{5}{2}$, then lists of length $k=3$ are sufficient for that goal in case of edge colourings (if G has no isolated edges), while already $k=2$ suffices in the total case. In fact the second of these statements remains true with arbitrary real colours admitted instead of positive integers, and the first one-for positive reals. The proofs of these facts are based on the discharging method combined with the algebraic approach of Alon known as Combinatorial Nullstellensatz.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is a well known fact that there are no irregular graphs, understood as simple graphs with pairwise distinct vertex degrees (cf. [6] for possible alternative definitions of irregular graphs), except for the trivial 1-vertex case. A special invariant was thus introduced in [7] aiming at capturing a level of an irregularity of a graph. Suppose that given a graph $G=(V, E)$ we wish to construct a multigraph with pairwise distinct vertex degrees of it by multiplying some of its edges. The least k so that we are able to achieve such goal using at most k copies of every edge is denoted by $s(G)$ and referred to as the irregularity strength of G. Alternatively one may consider (not necessarily proper) edge colourings $c: E \rightarrow\{1,2, \ldots, k\}$ with $\sum_{e \ni u} c(e) \neq \sum_{e \ni v} c(e)$ for every pair of distinct vertices $u, v \in V$. Then the least k which permits defining a colouring c with this feature equals $s(G)$. Numerous papers have been devoted to study on this graph invariant since the middle 80s, see e.g. [9,10,14,16-20].

On the other hand, there are many locally irregular graphs, i.e., those whose only adjacent vertices are required to have distinct degrees, see $[5,21]$ for studies devoted to these. Analogously as above one might thus also measure how far a given graph $G=(V, E)$ is from being locally irregular. That is, how large k is needed in order to define an edge colouring

[^0]$c: E \rightarrow\{1,2, \ldots, k\}$ with $\sum_{e \ni u} c(e) \neq \sum_{e \ni v} c(e)$ for every pair of adjacent vertices u, v of G. It is believed that already $k=3$ is sufficient for all graphs containing no isolated edges. This suspicion is commonly referred to as the $1-2-3-$ Conjecture, see [15], and still widely studied, as thus far it is only known that $k=5$ suffices, see [13], and [1,2,8] for other interesting results. The last breakthrough concerning this graph invariant was obtained due to development of an algorithm designed to attack a total analogue of the 1-2-3-Conjecture. This investigates how large k is needed in order to define a total colouring $c: V \cup E \rightarrow\{1,2, \ldots, k\}$ with $c(u)+\sum_{e \ni u} c(e) \neq c(v)+\sum_{e \ni v} c(e)$ for every pair of adjacent vertices u, v in a graph $G=(V, E)$. The 1-2-Conjecture, see [22], asserts that $k=2$ suffices for every graph. This is known to hold with additionally colour 3 admitted for the edges as proved by Kalkowski [12] (thus the conjecture itself remains open). The both conjectures are also known to hold e.g. for graphs with maximum average degree less than $\frac{8}{3}$, as proved by Cranston, Jahanbekam and West in [8].

Given any colouring $c: E \rightarrow \mathbb{R}$ (or $c: V \cup E \rightarrow \mathbb{R}$), whose values are frequently also called weights of the edges (and vertices) in the literature, we shall denote by

$$
d_{c}(v):=\sum_{u \in N(v)} c(u v) \quad\left(\text { or } d_{c}(v):=c(v)+\sum_{u \in N(v)} c(u v), \text { resp. }\right)
$$

the weighted degree of $v \in V$.
Now suppose we investigate a natural extension of the 1-2-3-Conjecture (the local correspondent of the irregularity strength), and instead of admitting colours $1,2, \ldots, k$ for every edge of G, we are forced to use colours from (possibly distinct) k-element subsets of the set $\{1,2,3, \ldots\}$ prescribed to the edges. In this paper we develop this extension and admit also positive real weights (i.e., weights from \mathbb{R}_{+}) in such lists associated with the edges. We shall say that the graph $G=(V, E)$ is k-positive-edge weight choosable if for every list assignment $L: E \rightarrow 2^{\mathbb{R}_{+}}$with $|L(e)|=k$ for $e \in E$, there exists an edge colouring $c: E \rightarrow \mathbb{R}_{+}$with $c(e) \in L(e)$ for $e \in E$ (i.e., a colouring from the given lists) such that $d_{c}(u) \neq d_{c}(v)$ for every $u v \in E$. A generalization of this concept, admitting lists of arbitrary real numbers was priory introduced under the name of k-weight choosability in [4], where Bartnicki et al. conjectured that every graph without an isolated edge is 3-weight choosable. This generalization of the 1-2-3-Conjecture was proved to hold e.g. for complete graphs, complete bipartite graphs and trees by these authors. Later total analogues of the above were introduced by Przybyło and Woźniak in [23], and independently by Wong and Zhu in [26]. We say that the graph $G=(V, E)$ is k-total weight choosable if for every list assignment $L: V \cup E \rightarrow 2^{\mathbb{R}}$ with $|L(v)|,|L(e)|=k$ for $v \in V, e \in E$, there exists a total colouring $c: V \cup E \rightarrow \mathbb{R}$ with $c(v) \in L(v), c(e) \in L(e)$ for $v \in V, e \in E$ such that $d_{c}(u) \neq d_{c}(v)$ for every $u v \in E$. It was conjectured in [23,26] that every graph is 2-total weight choosable. This has been confirmed for several classes of graph including complete graphs, trees, unicyclic graphs, wheels, generalized theta graphs, complete bipartite graphs, and a special class of complete multipartite graphs, see [23,24,26]. Moreover, in [27] Wong and Zhu developed a beautiful and clever argument, generalizing the result of Kalkowski [12], i.e., proving that lists of length 2 and 3 for the vertices and edges, resp., are always sufficient to construct a desired total colouring. In fact Wong and Zhu [26] introduced even more general concept in the total case. We say that a graph $G=(V, E)$ is (k, k^{\prime})-choosable if for every list assignment $L: V \cup E \rightarrow 2^{\mathbb{R}}$ with $|L(v)|=k,|L(e)|=k^{\prime}$ for $v \in V, e \in E$, there exists a total colouring $c: V \cup E \rightarrow \mathbb{R}$ with $c(v) \in L(v), c(e) \in L(e)$ for $v \in V, e \in E$ such that $d_{c}(u) \neq d_{c}(v)$ for every $u v \in E$. They also conjectured that every graph without isolated edges is $(1,3)$-choosable. This is still open in general. We shall refer to it as the $(1,3)$-choosable Conjecture.

2. Results and tools

The maximum average degree is a well known graph invariant, which is a conventional measure of sparseness of an arbitrary graph defined as

$$
\operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}, H \subseteq G\right\}
$$

For more details on this invariant see [11], where properties of the maximum average degree are exhibited and where it is proved that the maximum average degree may be computed by a polynomial algorithm.

The main results of this paper are the two following theorems.
Theorem 1. Every graph G without an isolated edge and with $\operatorname{mad}(G)<\frac{5}{2}$ is 3 -positive-edge weight choosable.
Theorem 2. Every graph G with $\operatorname{mad}(G)<\frac{5}{2}$ is 2 -total weight choosable.
We thus show that graphs with $\operatorname{mad}(G)<\frac{5}{2}$ satisfy the thesis of the list correspondent of the 1 -2-Conjecture from [23,26], and the same is true in a special subcase of the conjecture from [4] and the $(1,3)$-choosable Conjecture, where all lists associated with the edges contain only positive numbers, while vertices may be regarded to have the list $\{0\}$ assigned. It is worth mentioning that a stronger result than Theorem 2, namely that every 2-degenerate graph is 2-total weight choosable, was recently independently obtained in yet unpublished paper [25] together with a few other interesting results.

https://daneshyari.com/en/article/4949770

Download Persian Version:
https://daneshyari.com/article/4949770

Daneshyari.com

[^0]: * Corresponding author. Fax: +48 126173165 .

 E-mail addresses: jakubprz@agh.edu.pl (J. Przybyło), raspaud@labri.fr (A. Raspaud), mwozniak@agh.edu.pl (M. Woźniak).
 http://dx.doi.org/10.1016/j.dam.2016.09.037
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

