

Contents lists available at ScienceDirect

## **Discrete Applied Mathematics**

journal homepage: www.elsevier.com/locate/dam



#### Note

# A note on an induced subgraph characterization of domination perfect graphs



Eglantine Camby \*, Fränk Plein

Université Libre de Bruxelles, Département de Mathématique, Boulevard du Triomphe, 1050 Brussels, Belgium

#### ARTICLE INFO

Article history:
Received 2 May 2016
Received in revised form 7 September 2016
Accepted 28 September 2016
Available online 20 October 2016

Keywords: Domination Independent domination Forbidden induced subgraphs

#### ABSTRACT

Let  $\gamma(G)$  and  $\iota(G)$  be the domination and independent domination numbers of a graph G, respectively. Introduced by Sumner and Moore (1979), a graph G is domination perfect if  $\gamma(H)=\iota(H)$  for every induced subgraph  $H\subseteq G$ . In 1991, Zverovich and Zverovich proposed a characterization of domination perfect graphs in terms of forbidden induced subgraphs. Fulman (1993) noticed that this characterization is not correct. Later, Zverovich and Zverovich (1995) offered such a second characterization with 17 forbidden induced subgraphs. However, the latter still needs to be adjusted.

In this paper, we point out a counterexample. We then give a new characterization of domination perfect graphs in terms of only 8 forbidden induced subgraphs and a short proof thereof. Moreover, in the class of domination perfect graphs, we propose a polynomial-time algorithm computing, given a dominating set D, an independent dominating set Y such that  $|Y| \leq |D|$ .

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

#### 1.1. Basic definitions and notations

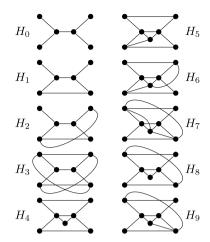
In this paper, graphs are undirected and simple. Standard notions are explained, for instance, by Diestel [11]. V and E denote the vertex and edge sets of a graph G, respectively. For a given vertex v, N(v) denotes the set of all neighbors (i.e. adjacent vertices) while, for a given vertex set X, G[X] denotes the subgraph of G induced by X. Moreover, if G and H are two graphs, we say that G is H-free if H does not appear as an induced subgraph of G. Furthermore, if G is  $H_1$ -free,  $H_2$ -free, ...,  $H_k$ -free for some graphs  $H_1, H_2, \ldots, H_k$ , we say that G is  $H_1$ :  $H_2$ :  $H_3$ :  $H_4$ :

A dominating set of a graph G = (V, E) is a set D of vertices such that every vertex  $v \in V \setminus D$  has at least one neighbor in D. The domination number of a graph G, denoted by  $\gamma(G)$ , is the minimum cardinality of a dominating set. A dominating set with such cardinality is called *minimum* while a dominating set is *minimal* if no proper subset is a dominating set.

A graph is *complete* if it contains all possible edges. A set D of vertices is *independent* (also called *stable*) if the subgraph induced by D has no edge. An independent set X of a graph G = (V, E) is *maximal* if for every vertex  $v \in V \setminus X, X \cup \{v\}$  is not independent. A dominating set D of a graph D is called *independent* if D is independent. It is known [4,6], that an independent dominating set is a maximal independent set, and conversely. The *independent domination number* of a graph D0, denoted by D1, is the minimum cardinality of an independent dominating set in D2. Thus, an independent dominating set is *minimum* if its cardinality is minimum.

E-mail addresses: ecamby@ulb.ac.be (E. Camby), fplein@ulb.ac.be (F. Plein).

<sup>\*</sup> Corresponding author.



**Fig. 1.** An illustration of graphs  $H_i$ , for i = 0, ..., 9.



**Fig. 2.** An illustration of the graph  $H_{10}$ .

Sumner and Moore [23] introduced the notion of domination perfect graph, as a graph G such that  $\gamma(H) = \iota(H)$ , for all induced subgraphs H of G. A graph is said minimal domination perfect if the graph is not domination perfect but all proper induced subgraphs are.

#### 1.2. Previous works

The class of domination perfect graphs has been studied. Looking for a characterization, many authors focused on special subclasses of graphs. We present here a brief survey on domination perfect graphs.

The line graph L(T) of a tree T is always domination perfect [7,20]. More generally, every line graph is domination perfect, proved by Allan and Laskar [1] and independently by Gupta (see Theorem 10.5 [17]). In fact, Allan and Laskar gave a sufficient condition in the following theorem.

**Theorem 1** (Allan and Laskar [1]). Every claw-free graph is domination perfect.

Topp and Volkmann [24] generalized their results to new classes of graphs.

**Theorem 2** (Topp and Volkmann [24]). If G is  $H_{10}$ -free and  $(G_i)_{i=1}^{13}$ -free (see Figs. 2 and 3) then G is domination perfect.

As observed in [27], the original version of this theorem in [24] was stated with two additional graphs, which were shown to be redundant.

Harary and Livingston [18] studied the class of domination perfect trees and offered a complex characterization of this class. Other characterizations of these particular trees are mentioned in [9,13,19]. Actually, determining a minimum dominating set and a minimum independent dominating set in trees can be achieved in linear time [7,10,14].

Sumner [22] gave a characterization of domination perfect graphs in the classes of chordal and planar graphs while Zverovich and Zverovich [26] tackled the case of triangle-free graphs. Consider the class  $\delta$  of graphs defined by

 $\mathcal{S} = \{H \text{ graph on at most 8 vertices } | \gamma(H) = 2, \iota(H) > 2 \}.$ 

#### Theorem 3.

- (Sumner [22]) Let G be a chordal graph. G is domination perfect if and only if G is  $H_0$ -free.
- (Sumner [22]) Let G be a planar graph. G is domination perfect if and only if G is &-free.
- (Zverovich and Zverovich [26]) Let G be a triangle-free graph. G is domination perfect if and only if G is  $(H_i)_{i=0}^3$ -free. where graphs  $H_i$  are drawn in Fig. 1.

Sumner and Moore [23] attempted to extend previous results to all graphs.

**Theorem 4** (Sumner and Moore [23]). If G is &-free and G is  $H_{10}$ -free then G is domination perfect, where  $H_{10}$  is depicted in Fig. 2.

### Download English Version:

# https://daneshyari.com/en/article/4949775

Download Persian Version:

https://daneshyari.com/article/4949775

<u>Daneshyari.com</u>