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a b s t r a c t

A radio labeling of a graphG is amapping f : V (G) → {0, 1, 2, . . .} such that |f (u)−f (v)| ≥

diam(G) + 1 − d(u, v) for every pair of distinct vertices u, v of G, where diam(G) is the
diameter of G and d(u, v) the distance between u and v in G. The radio number of G is the
smallest integer k such that G has a radio labeling f with max{f (v) : v ∈ V (G)} = k. We
give a necessary and sufficient condition for a lower bound on the radio number of trees to
be achieved, two other sufficient conditions for the same bound to be achieved by a tree,
and an upper bound on the radio number of trees. Using these, we determine the radio
number for three families of trees.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In a graph model for the channel assignment problem, the transmitters are represented by the vertices of a graph; two
vertices are adjacent or at distance two apart in the graph if the corresponding transmitters are very close or close to each
other. Motivated by this problem Griggs and Yeh [9] introduced the following distance-two labeling problem: An L(2, 1)-
labeling of a graph G = (V (G), E(G)) is a function f from the vertex set V (G) to the set of nonnegative integers such that
|f (u) − f (v)| ≥ 2 if d(u, v) = 1 and |f (u) − f (v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between u and v in G.
The span of f is defined as max{f (u) − f (v) : u, v ∈ V (G)}, and the minimum span over all L(2, 1)-labelings of G is called
the λ-number of G, denoted by λ(G). The L(2, 1)-labeling and other distance-two labeling problems have been studied by
many researchers in the past two decades; see [5,22].

It has been observed that interference among transmitters may go beyond two levels. Motivated by the channel
assignment problem for FM radio stations, Chartrand et al. [6] introduced the following radio labeling problem. Denote
by diam(G) the diameter of G, that is, the maximum distance among all pairs of vertices in G.

Definition 1.1. A radio labeling of a graphG is amapping f : V (G) → {0, 1, 2, . . .} such that for every pair of distinct vertices
u, v of G,

d(u, v) + |f (u) − f (v)| ≥ diam(G) + 1.

The integer f (u) is called the label of u under f , and the span of f is defined as span(f ) = max{|f (u) − f (v)| : u, v ∈ V (G)}.
The radio number of G is defined as

rn(G) := min
f

span(f )

with minimum over all radio labelings f of G. A radio labeling f of G is optimal if span(f ) = rn(G).
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Observe that any radio labeling should assign different labels to distinct vertices. Note also that any optimal radio labeling
must assign 0 to some vertex. In the case when diam(G) = 2 we have rn(G) = λ(G).

Determining the radio number of a graph is an interesting but challenging problem. So far the radio number is known
only for a handful families of graphs (see [8] for a survey). Chartrand et al. [6,7,23] studied the radio labeling problem for
paths and cycles, and this was continued by Liu and Zhu [17] who gave the exact value of the radio number for paths and
cycles.We emphasize that even in these innocent-looking cases itwas challenging to determine the radio number. In [15,16],
Liu and Xie discussed the radio number for the square of paths and cycles. In [18–20], Vaidya and Bantva studied the radio
number for the total graph of paths, the strong product of P2 with Pn and linear cacti. In [2], Benson et al. determined the
radio number of all graphs of order n and diameter n − 2, where n ≥ 2 is an integer. Bhatti et al. studied [3] the radio
number of wheel-like graphs, while Čada et al. discussed [4] a general version of radio labelings of distance graphs. In [14],
Liu gave a lower bound on the radio number for trees and presented a class of trees achieving this bound. In [13], Li et al.
determined the radio number for completem-ary trees. In [10], Halász and Tuza determined the radio number of internally
regular complete trees among other things. (A few distance-three labeling problems for such trees of even diameters were
studied in [11].) In spite of these efforts, the problem of determining the exact value of the radio number for trees is still
open, and it seems unlikely that a universal formula exists for all trees.

Inspired by the work in [13], in this paper we first give a necessary and sufficient condition for a lower bound
[14, Theorem 3] (see also Lemma 3.1) on the radio number of trees to be achieved (Theorem 3.2), together with an optimal
radio labeling.We also give two sufficient conditions for this bound to be achieved (Theorem3.6) and obtain an upper bound
on the radio number of trees (Theorem 3.7). These results provide methodologies for obtaining the exact values of or upper
bounds on the radio number of trees, and using themwe determine in Section 4 the radio number for three families of trees,
namely banana trees, firecracker trees, and caterpillars in which all vertices on the spine have the same degree. Our result
for caterpillars implies the result in [17] for paths. As concluding remarks, in Section 5 we demonstrate that the results on
the radio numbers of internally regular complete trees [10, Theorem 1] and completem-ary trees form ≥ 3 [13, Theorem 2]
can be obtained by using our method.

2. Preliminaries

We follow [21] for graph-theoretic definition and notation. A tree is a connected graph that contains no cycle. In [14] the
weight of T from v ∈ V (T ) is defined as wT (v) =


u∈V (T ) d(u, v) and the weight of T as w(T ) = min{wT (v) : v ∈ V (T )}. A

vertex v ∈ V (T ) is a weight centre [14] of T if wT (v) = w(T ). Denote by W (T ) the set of weight centres of T . It was proved
in [14, Lemma 2] that every tree T has either one or twoweight centres, and T has twoweight centres, say,W (T ) = {w, w′

},
if and only if w and w′ are adjacent and T −ww′ consists of two equal-sized components. We view T as rooted at its weight
centreW (T ): ifW (T ) = {w}, then T is rooted at w; ifW (T ) = {w, w′

} (where w and w′ are adjacent), then T is rooted at w
and w′ in the sense that both w and w′ are at level 0. In either case, if in T the unique path from a weight centre to a vertex
v ∉ W (T ) passes through a vertex u (possibly with u = v), then u is called an ancestor of v, and v is called a descendent
of u. If v is a descendent of u and is adjacent to u, then v is a child of u. Let u ∉ W (T ) be adjacent to a weight centre. The
subtree induced by u and all its descendent is called a branch at u. Two branches are called different if they are at two vertices
adjacent to the same weight centre, and opposite if they are at two vertices adjacent to different weight centres. Note that
the latter case occurs only when T has two weight centres. Define

L(u) := min{d(u, x) : x ∈ W (T )}, u ∈ V (T )

to indicate the level of u in T . Define the total level of T as
L(T ) :=


u∈V (T )

L(u).

For any u, v ∈ V (T ), define
φ(u, v) := max{L(x) : x is a common ancestor of u and v}

δ(u, v) :=


1, ifW (T ) = {w, w′

} and Puv contains the edge ww′

0, otherwise.

Lemma 2.1. Let T be a tree with diameter d ≥ 2. Then for any u, v ∈ V (T ) the following hold:
(a) φ(u, v) ≥ 0;
(b) φ(u, v) = 0 if and only if u and v are in different or opposite branches;
(c) δ(u, v) = 1 if and only if T has two weight centres and u and v are in opposite branches;
(d) the distance d(u, v) in T between u and v can be expressed as

d(u, v) = L(u) + L(v) − 2φ(u, v) + δ(u, v). (1)

3. Radio number of trees

A radio labeling of T is an injective mapping f from V (T ) to the set of nonnegative integers; we can always assume that
f assigns 0 to some vertex. Thus f induces a linear order of the vertices of T , namely V (T ) = {u0, u1, . . . , up−1} (where
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