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a b s t r a c t

We develop and apply combinatorial algorithms for investigation of the feasible distance
distributions of binary orthogonal arrays with respect to a point of the ambient binary
Hamming space utilizing constraints imposed from the relations between the distance
distributions of connected arrays. This turns out to be strong enough and we prove the
nonexistence of binary orthogonal arrays of parameters (length, cardinality, strength) =

(9, 96, 4), (10, 192, 5), (10, 112, 4), (11, 224, 5), (11, 112, 4) and (12, 224, 5), resolving
the first cases where the existence was undecided so far. For the existing arrays our ap-
proach allows substantial reduction of the number of feasible distance distributions which
could be helpful for classification results (uniqueness, for example).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Orthogonal arrays have many connections to other combinatorial designs and have applications in coding theory, the
statistical design of experiments, cryptography, various types of software testing and quality control.We refer to the book [6]
as excellent exposition of the theory and practice of orthogonal arrays. In fact, there are enormousmaterial about orthogonal
arrays in internet.

An orthogonal array (OA) of strength τ and index λ in H(n, 2) (or binary orthogonal array, BOA), consists of the rows of
an M × n matrix C with the property that every M × τ submatrix of C contains all ordered τ -tuples of H(τ , 2), each one
exactly λ = M/2τ times as rows.

Let C ⊂ H(n, 2) be an (n,M, τ ) BOA. The distance distribution of C with respect to c ∈ H(n, 2) if the (n + 1)-tuple

w = w(c) = (w0(c), w1(c), . . . , wn(c)),

where wi(c) = |{x ∈ C |d(x, c) = i}|, i = 0, . . . , n. All feasible distance distributions of BOA of parameters (n,M, τ ) can
be computed effectively for relatively small n and τ as shown in [2]. Indeed, every distance distribution of C satisfies the
system
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k

= bk|C |, k = 0, 1, . . . , τ , (1)
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1
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and, in particular, bk = 0 for k odd.
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The number bk is in fact the first coefficient in the expansion of the polynomial tk in terms of (binary) Krawtchouk
polynomials. The Krawtchouk polynomials are zonal spherical functions for H(n, 2) (see [5,8,9]) and can be the defined
by the three-term recurrence relation

(n − k)Q (n)
k+1(t) = ntQ (n)

k (t) − kQ (n)
k−1(t) for 1 ≤ k ≤ n − 1,

with initial conditions Q (n)
0 (t) = 1 and Q (n)

1 (t) = t .
Let n,M and τ ≤ n be fixed. We denote by P(n,M, τ ) the set of all possible distance distributions of a (n,M, τ ) BOA

with respect to internal point c (in the beginning — all admissible solutions of the system (1) with w0(c) ≥ 1) and by
Q (n,M, τ ) the set of all possible distance distributions of a (n,M, τ ) BOA with respect to external point (in the beginning
— all admissible solutions of the system (1) with w0(c) = 0). Denote alsoW (n,M, τ ) = P(n,M, τ ) ∪ Q (n,M, τ ).

In this paper we describe an algorithm which works on the sets P(n,M, τ ),Q (n,M, τ ) and W (n,M, τ ) utilizing
connections between related BOAs. During the implementation of our algorithm these sets are changed1 by ruling out some
distance distributions.

In Section 2we prove several assertions which connect the distance distributions of arrays under consideration and their
relatives. This imposes significant constraints on the targeted BOAs and therefore allows us to collect rules for removing
distance distributions from the sets P(n,M, τ ),Q (n,M, τ ) and W (n,M, τ ). The logic of our algorithm is described in
Section 3. The new nonexistence results are described in Section 4.

Algorithms for dealing with distance distributions were proposed earlier in [2,3] but in these papers the set P(n,M, τ )
was only examined. Moreover, two seemingly crucial observations (Theorem 1 together with Corollary 2 and Theorem 12
together with Corollary 13) are new. Also, all complete versions (for the set W (n,M, τ )) of the remaining assertions from
the next section are new.

After the book [6], the enumeration and existence/nonexistence of BOAs was also addressed in [1,4,7,10,12] by different
methods and on different targets. Our results confirm the nonexistence claims from [4] for small lengths and from [7] for
large lengths. It would be interesting if the remaining distance distributions can be compared.

2. Relations between distance distributions of (n,M, τ) BOA and its derived BOAs

We start with a simple observation.

Theorem 1. If the distance distribution w = (w0, w1, . . . , wn) belongs to the set W (n,M, τ ), then the distance distribution
w = (wn, wn−1, . . . , w0) also belongs to W (n,M, τ ).

Proof. Let C ⊂ H(n, 2) be a BOA of parameters (n,M, τ ) and C is the array which is obtained from C by the permutation
(0 → 1, 1 → 0) in the whole C . Since the distances inside C are preserved by this transformation, C is again (n,M, τ )
BOA. On the other hand, distance i from external for C point to a point of C corresponds to distance n− i to the transformed
point of C . This means that if w = (w0, w1, . . . , wn) is the distance distribution of C with respect to some point c ∈ H(n, 2)
(internal or external for C), then the distance distribution of C with respect to the same point (which can become either
internal or external for C , depending on whether wn > 0 or wn = 0) is w = (wn, wn−1, . . . , w0). �

Corollary 2. The distance distribution w = (w0, w1, . . . , wn) ∈ W (n,M, τ ) is ruled out if w = (wn, wn−1, . . . , w0) ∉

W (n,M, τ ).

Corollary 2 is important in all stages of our algorithm since it requires the non-symmetric distance distributions to be
paired off and infeasibility of one element of the pair immediately implies the infeasibility for the other.

We proceed with analyzing relations between the BOA C and BOAs C ′ of parameters (n − 1,M, τ ) which are obtained
from C by deletion of one of its columns. Of course, the setW (n − 1,M, τ ) of possible distance distributions of C ′ is sieved
by Corollary 2 as well.

It is convenient to fix the removing of the first column of C . Let the distance distribution of C with respect to c =

0 = (0, 0, . . . , 0) ∈ H(n, 2) be w = (w0, w1, . . . , wn) ∈ W (n,M, τ ) and the distance distribution of C with respect to
c ′

= (0, 0, . . . , 0) ∈ H(n − 1, 2) be w′
= (w′

0, w
′

1, . . . , w
′

n−1) ∈ W (n − 1,M, τ ).
For every i ∈ {0, 1, . . . , n} the matrix which consists of the rows of C of weight i is called i-block. It follows from the

above notations that the cardinality of the i-block iswi. Next we denote by xi (yi, respectively) the number of the ones (zeros,
respectively) in the intersection of the first column of C and the rows of the i-block.

Theorem 3. The numbers xi and yi, i = 0, 1, . . . , n, satisfy the following system of linear equations
xi + yi = wi, i = 1, 2, . . . , n − 1
xi+1 + yi = w′

i, i = 0, 1, . . . , n − 1
y0 = w0
xn = wn
xi, yi ∈ Z, xi ≥ 0, yi ≥ 0, i = 0, 1, . . . , n.

(2)

1 However, we prefer to keep the initial notation in order to avoid tedious notation.



Download English Version:

https://daneshyari.com/en/article/4949787

Download Persian Version:

https://daneshyari.com/article/4949787

Daneshyari.com

https://daneshyari.com/en/article/4949787
https://daneshyari.com/article/4949787
https://daneshyari.com

