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a b s t r a c t

In Vertex Coloring Problems, one is required to assign a color to each vertex of anundirected
graph in such a way that adjacent vertices receive different colors, and the objective is to
minimize the cost of the used colors. In this workwe solve four different coloring problems
formulated as Maximum Weight Stable Set Problems on an associated graph. We exploit
the transformation proposed by Cornaz and Jost (2008), where given a graphG, an auxiliary
graph Ĝ is constructed, such that the family of all stable sets of Ĝ is in one-to-one corre-
spondence with the family of all feasible colorings of G. The transformation in Cornaz and
Jost (2008) was originally proposed for the classical Vertex Coloring and the Max-Coloring
problems;we extend it to the Equitable Coloring Problemand the Bin Packing Problemwith
Conflicts. We discuss the relation between the MaximumWeight Stable formulation and a
polynomial-size formulation for the VCP, proposed by Campêlo et al. (2008) and called the
Representative formulation.We report extensive computational experiments on benchmark
instances of the four problems, and compare the solutionmethod with the state-of-the-art
algorithms. By exploiting the proposed method, we largely outperform the state-of-the-
art algorithm for the Max-coloring Problem, and we are able to solve, for the first time to
proven optimality, 14 Max-coloring and 2 Equitable Coloring instances.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that
adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In the classical Vertex
Coloring Problem (VCP), all colors have the same cost, hence, the objective is to minimize the number of used colors. The
Equitable Coloring Problem is a VCPwith the additional restriction that subsets of vertices receiving the same color, denoted
as color classes, differ in cardinality of at most one unit. The Max-coloring Problem is defined as a VCP where each vertex
has a positive weight, and the cost of a color is given by the maximum weight of the vertices in the corresponding color
class. Finally, by considering a VCP with a positive weight associated with each vertex, and imposing that the total weight
of the vertices in a color class does not exceed a given capacity, we obtain a VCP with capacity constraints. Because the
problem generalizes the Bin Packing Problem as well, it is known in the literature as Bin Packing Problemwith Conflicts. All
mentioned problems are NP-hard.

∗ Corresponding author.
E-mail addresses: denis.cornaz@dauphine.fr (D. Cornaz), fabio.furini@dauphine.fr (F. Furini), enrico.malaguti@unibo.it (E. Malaguti).

http://dx.doi.org/10.1016/j.dam.2016.09.018
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.09.018
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:denis.cornaz@dauphine.fr
mailto:fabio.furini@dauphine.fr
mailto:enrico.malaguti@unibo.it
http://dx.doi.org/10.1016/j.dam.2016.09.018


2 D. Cornaz et al. / Discrete Applied Mathematics ( ) –

Coloring problems are very challenging from the computational viewpoint and have several relevant applications,
including, just to mention a few, scheduling [17], timetabling [8], frequency assignment [14], register allocation [5] and
communication networks [27] (see Malaguti and Toth, [20]).
Problems definition. Let G be a graph with vertex set V (G) and edge set E(G). A stable set S ⊆ V (G) is a subset of vertices
containing no edge, a clique K ⊆ V (G) is a subset of vertices inducing a complete subgraph. The stable sets of G are the
cliques of the complementary graph G of G.

Given a weight c ∈ ZV (G), the Max Weight Stable Set Problem (MWSSP) is to determine a stable set S of G maximizing
v∈S c(v). We denote by α(G, c) the optimum of MWSSP. The MWSSP can be naturally formulated as a (Mixed-)Integer

Linear Program (MIP) since α(G, c) = max c⊤x over x in STAB(G), that is, the set of vectors of RV (G) satisfying
xu + xv ≤ 1 uv ∈ E(G)
xv ∈ {0, 1} v ∈ V (G).

A p-coloring of G is a partition S = S1, . . . , Sp of V (G) into p stable sets Si, where each stable set represents a color.
The Vertex Coloring Problem (VCP) is to find a p-coloring of G with a minimum number of colors p. We denote by χ(G) the
optimum of VCP. The VCP is a very challenging problem from the computational viewpoint, for which state-of-the-art exact
methods can fail in optimally solving instances with more than 200 vertices. The best performing exact methods for the
VCP are based on the Set Covering formulation of the problem, where binary variables are associated with stable sets of G.
Since stable sets of an arbitrary graph G are in exponential number with respect to the graph size, Set Covering formulations
require columngeneration techniques andBranch-and-Price algorithms formanaging the exponentiallymany variables. The
recent algorithms by Malaguti, Monaci and Toth [19], Gualandi and Malucelli [15], and Held, Cook and Sewell [16], are all
very sophisticated implementations of a Branch-and-Price algorithm, embedding specialized (meta)heuric procedures [19],
constraint programming techniques [15] and improved algorithms for the column generation subproblem [16]. For random
graphs, competitive experimental results are obtained by implicit enumeration schemes based on the DSATUR algorithm by
Brélaz [3], see, e.g., [26]. We also mention the Branch-and-Cut approach by Méndez-Díaz and Zabala [23], which is effective
for some special classes of graphs.

Given a graph G, a coloring S = S1, . . . , Sp is equitable if |Si| − |Sj| ≤ 1 for each i, j = 1, . . . , p. The Equitable Coloring
Problem (ECP) is to find an equitable coloring with minimum p. We denote by χeq(G) the optimum of ECP. The most re-
cent mathematical programming contributions to the exact solution of the ECP include the Branch-and-Cut algorithm by
Bahiense et al. [1], which exploits an asymmetric formulation; and the MIP formulation by Méndez-Díaz, Nasini and Sev-
erín [22], which is strengthened by valid inequalities derived from a polyhedral study, and can be solved directly by a MIP
solver. In addition, a DSATUR based Branch-and-Bound algorithm was recently proposed by Méndez-Díaz, Nasini and Sev-
erín [21]. To the best of our knowledge, no extended formulationwith variables associatedwith stable sets ofGwasproposed.
A possible reason is the non straightforward definition of equitable cardinality constraints for the color classes in this setting.

Given a graph G and vertex weights c ∈ ZV (G), theMax-coloring Problem (also known asWeighted VCP, see [18,13]) is the
problem of determining a coloring S = S1, . . . , Sp of G which minimizes ψ(S) :=

p
i=1 ci where ci = maxv∈Si c(v). We

denote by χmax(G, c) the optimum of Max-col. When c is a unit vector, ψ(S) = p and Max-col reduces to the VCP. The best
performing exact method for the Max-col is the Branch-and-Price algorithm by Furini and Malaguti [13], which can solve
instances with up-to 100 vertices.

Given a graph G, vertex weights c ∈ ZV (G), and a nonnegative integer κ , the Bin Packing Problem with Conflict (BPPC) is
to determine a coloring S = S1, . . . , Sp of G which minimizes p so that the weight of the stable sets c(Si) :=


v∈Si

c(v)
does not exceed κ . The optimum is denoted by χbp(G, c, κ). State-of-the-art algorithms for the BPPC, recently proposed
by Fernandes-Muritiba et al. [11], Elhedhli et al. [9], Sadykov and Vanderbeck [25], exploit a Set Covering formulation and
implement a Branch-and-Price framework. Apparently, the presence of capacity constraints on the cardinality of the color
classes reduces the practical difficulty of solving the BPPC. Thementioned algorithms can solve to optimality instances with
up to 500 vertices.

In this work we solve the VCP, ECP, Max-col and BPPC by reformulating them as MWSSPs on an associated graph. We
exploit the transformation proposed by Cornaz and Jost [6], where given a graph G, an auxiliary graph Ĝ is constructed,
such that the family of all stable sets of Ĝ is in one-to-one correspondence with the family of all feasible colorings of G.
The transformation was originally proposed for the VCP and for the Max-col. We extend the transformation to the ECP and
the BPPC; in these cases additional constraints have to be defined for the MWSSP. The advantage of this approach relies on
simplicity: it allows us to solve coloring problems by solvingMWSSPs, which can be tackled by problem specific algorithms,
or can be formulated asMIPs of polynomial size, and solved by a general purposeMIP solver.Wediscuss the relation between
theMWSSPs reformulation and a polynomial-size formulation for the VCP, proposed by Campêlo, Corrêa and Campos [4] and
called the Representative formulation. To the best of our knowledge the computational performance of this latter formulation
has not been investigated in the literature. Instead, computational results are presented by Bahiense et al. [1], where a
Branch-and-Cut algorithm based on the Representative formulation is developed for the Equitable Coloring problem.

The transformation by Cornaz and Jost [6] was exploited by Bonomo, Giandomenico and Rossi to derive polynomial-
time algorithms for special classes of graphs [2]. Recently, the same transformation was exploited by Furini, Gabrel and
Ternier [12] to derive strong and fast lower bounds for the VCP, which are then used to design a DSATUR based Branch-and-
Bound algorithm. The transformation was also exploited in [7] to improve the Theta-Lovász lower bound for VCP.
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