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a b s t r a c t

A λ-harmonious colouring of a graph G is a mapping from V (G) into {1, . . . , λ} that assigns
colours to the vertices of G such that each vertex has exactly one colour, adjacent vertices
have different colours, and any two edges have different colour pairs. The harmonious
chromatic number h(G) of a graph G is the least positive integer λ, such that there exists
a λ-harmonious colouring of G.

Let h(G, λ) denote the number of all λ-harmonious colourings of G. In this paper we
analyse the expression h(G, λ) as a function of a variable λ. We observe that this is a
polynomial in λ of degree | V (G) |, with a zero constant term. Moreover, we present a
reduction formula for calculating h(G, λ). Using reducing steps we show the meaning of
some coefficients of h(G, λ) and prove the Nordhaus–Gaddum type theorem, which states
that for a graph Gwith diameter greater than two

h(G) +
1
2
χ(G2) ≤| V (G) |,

whereχ(G2) is the chromatic number of the complement of the square of a graph G. Also
the notion of harmonious uniqueness is discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The first paper on some variant of harmonious colouring appeared in 1982 [11] on the occasion of studying some
problems connected to register allocation for computer programs and assignment of frequencies to radio stations. The
definition of this notion, in the form used in the paper, was announced in 1983 [13].

A harmonious colouring of a graphG is amapping that assigns colours to the vertices ofG such that each vertex has exactly
one colour, adjacent vertices have different colours, and any two edges have different colour pairs. The harmonious chromatic
number h(G) of a graph G is the minimum number of colours assigned to the vertices in a harmonious colouring of G.

Let χ(G) denote the chromatic number of G and let G2 denote the graph resulting from G by the addition of edges joining
vertices which are at distance two in G (the square of G). Observe that if two different vertices of a graph have common
neighbour, then they obtain different colours in any harmonious colouring. Using just introduced notions, this fact can be
formulated in the following way.

Remark 1. For each n-vertex graph G it holds h(G) ≥ χ(G2). In particular, if G has diameter at most two, then h(G) = n.
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It was shown by Hopcroft and Krishnamoorthy [13] that the problem of determining the harmonious chromatic number
of a graph is NP-hard. Moreover, Edwards andMcDiarmid [10] showed that the problem remains hard even restricted to the
class of trees. On the other hand, the harmonious chromatic number is known for almost all graphs. Indeed, almost all graphs
have diameters less than three and for each such a graph its harmonious chromatic number and the number of vertices are
equal (see Remark 1).

The wide literature connected with problems of graph harmonious colourability contains mainly papers in which the
lower/upper bounds on the harmonious chromatic number or the exact value of this number for some special classes of
graphs are given [1–4,7–9,16,18]. Also the subject of complexity of related problems is very popular [5,6]. Let G stand for
the graph with the same vertex-set as G, in which two vertices are adjacent if and only if they are non-adjacent in G (the
complement of G). The only known Nordhaus–Gaddum type theorem in this field says that the sum h(G) + h(G) does not
exceed twice the number of vertices of a graph G [15]. We recall that the famous Nordhaus–Gaddum theorem [17] applied
to the square of a graph G states χ(G2) + χ(G2) ≤ |V (G)| + 1. Noting that h(G) ≥ χ(G2) (see Remark 1) we formulate the
main result of this paper as Theorem 7.

Theorem 7. For each n-vertex graph G with diameter greater than two it holds

h(G) +
1
2
χ(G2) ≤ n.

The proof of this result uses the reducing step of the reduction formula for calculating the number of all harmonious
colourings of a graph with λ accepted colours (Theorem 4). We prove that the function that counts such colourings is a
polynomial in λ and we describe many of its properties (Theorems 1–3).

2. Preliminaries

Throughout this paper,we consider finite andundirected graphsGwith vertex setV (G) and edge set E(G) that are loopless
and have no multiple edges. In general, we follow the notation and terminology of [19].

In particular, the distance between two vertices u, v in a graph G is the length of a shortest (u−v)-path in G (the number
of edges in the path). The diameter of a graph G is the largest distance between two vertices taken over all pairs of vertices
of G. For a set S ⊆ V (G) by G[S] we denote a subgraph of G induced by S. The equality G = H means that graphs G and H are
isomorphic. By G− ewe denote a graph resulting from G by the removal of one edge. As we mentioned before, the symbols
G and G2 stand for the complement and the square of a graph G, respectively. A complete graph, a path, a cycle of order n
are denoted Kn, Pn, Cn. A complete bipartite graph with the cardinalities of partite sets p, q is denoted by Kp,q. For any graph
G and any positive integer k the notation kG is used for the disjoint union of k copies of G.

The symbols N and N0 stand for the set of positive and nonnegative integers. For a, b ∈ N0 we adopt the convention
[a, b] = {a, . . . , b] with the assumption [a, b] = ∅ when b < a and with the simplification [1, b] = [b]. Additionally, for
λ ∈ R, n ∈ N, we use the notation [λ]n = λ(λ − 1) · · · (λ − n + 1) and denote by


X
n


the set of all n-element subsets of

the set X . If λ ∈ N, then by a λ-colouring of X we mean a mapping g : X → [λ]. For an arbitrary graph G, a λ-colouring g of
V (G) is called proper if g assigns different colours to adjacent vertices. The chromatic number of G, denoted χ(G), is the least
positive integer λ such that there exists a proper λ-colouring of G. If a proper λ-colouring g of G additionally satisfies the
condition {g(v1), g(v2)} ≠ {g(x1), g(x2)} for any two edges v1v2, x1x2 ∈ E(G), then it is called a λ-harmonious colouring of
G or shortly a harmonious colouring of G. By h(G, λ) we denote the number of all λ-harmonious colourings of a graph G. The
harmonious chromatic number of G, denoted by h(G), is the least positive integer λ, such that there exists a λ-harmonious
colouring of G.

In many cases, we consider graphs G whose edge set is partitioned as E(G) = E1(G) ∪ E2(G) in a way to be specified
later. We refer to such a graph G as a graph with two kinds of edges. The complement G in this case will then have the usual
meaning, namely, V (G) = V (G) and E(G) = {xy : x, y ∈ V (G), xy ∉ E1(G) ∪ E2(G)}.

3. Harmonious partitions

Let j ∈ N and let G be a graph. A partition of V (G) into nonempty parts V1, . . . , Vj such that G[Vi] is an edgeless graph for
each i ∈ [j] and for any two different i1, i2 ∈ [j] the graph G[Vi1 ∪ Vi2 ] has at most one edge is called harmonious.

Lemma 1. Let n ∈ N, G be an n-vertex graph and V ′
⊆ V (G).

1. If the partition of V (G) in which V ′ is one of the partition parts is harmonious, then G2
[V ′

] is an edgeless graph.
2. If G2

[V ′
] is an edgeless graph, then the partition of V (G) in which V ′ is one of the parts and remaining parts are one-element

sets is harmonious.

Proof. From the definition of a harmonious partition, the vertices in V ′ are pairwise nonadjacent in G and no two of them
have common neighbour in G. It means that G2

[V ′
] is edgeless.
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