ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Bounds on the independence number of a graph in terms of order, size and maximum degree

Nader Jafari Rad*, Elahe Sharifi

Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

ARTICLE INFO

Article history: Received 25 May 2015 Received in revised form 29 August 2016 Accepted 9 September 2016 Available online xxxx

Keywords: Transversal Independence Maximum degree

1. Introduction

ABSTRACT

The independence number of a graph G is the maximum cardinality of an independent set of vertices in G. In this paper we obtain several new lower bounds for the independence number of a graph in terms of its order, size and maximum degree, and characterize graphs achieving equalities for these bounds. Our bounds improve previous bounds for graphs with large maximum degree.

© 2016 Elsevier B.V. All rights reserved.

In this paper we study independence number and transversal number in graphs. For notation and terminology not presented here we refer to [9]. Let G = (V(G), E(G)) be a simple graph with vertex set V(G) and edge set E(G). We denote by n(G) and m(G), or just n, m if G is specified, the order and size of G, respectively. For a vertex $v \in V(G)$, let $N_G(v) = \{u \mid uv \in E(G)\}$ denote the *open neighborhood* of v. The *degree* of a vertex v, $\deg_G(v)$, or just $\deg(v)$, in a graph G denotes the number of neighbors of v in G. We denote by $\Delta(G)$ and $\delta(G)$ the maximum degree and the minimum degree of the vertices of G, respectively. If S is a subset of V(G), then we let $\delta_G[S] = \min\{\deg_G(v) \mid v \in S\}$. For a subset S of V(G), we denote by G[S] the subgraph of G induced by S. A *clique* is a subset of vertices such that its induced subgraph is complete. The *clique number*, $\omega(G)$, of a graph G is the number of vertices in a maximum clique in G. A *leaf* in a graph is a vertex of degree one, and a *support vertex* is one that is adjacent to a leaf. An edge of G is called a *pendant edge* if at least one of its vertices is a leaf of G. An *isolated vertex* in a graph is a vertex that is not adjacent to any vertex. We use the standard notation $[k] = \{1, 2, \ldots, k\}$.

A set *S* of vertices in a graph *G* is an *independent set* if no pair of vertices of *S* is adjacent. The *independence number* of *G*, denoted by $\alpha(G)$, is the maximum cardinality of an independent set in *G*. An independent set of cardinality $\alpha(G)$ is called an $\alpha(G)$ -set. A vertex *covers* an edge if it is incident with the edge. A *transversal* in the graph *G* is a set of vertices that covers all the edges. We remark that a transversal is also called a *vertex-cover* in the literature. The *transversal number* of *G*, denoted by $\tau(G)$, is the minimum cardinality of a transversal in *G*. A transversal of cardinality $\tau(G)$ is called a $\tau(G)$ -set. Since an isolated vertex covers no edge, we consider graphs without isolated vertices. The following are well-known.

Observation 1. For any graph G of order n, $\alpha(G) + \tau(G) = n$.

Observation 2. For every graph *G* of order *n* and size *m*, $\tau(G) \leq (n + m)/3$.

* Corresponding author. E-mail address: n.iafarirad@gmail.com (N.I. Rad).

http://dx.doi.org/10.1016/j.dam.2016.09.021 0166-218X/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: N.J. Rad, E. Sharifi, Bounds on the independence number of a graph in terms of order, size and maximum degree, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.09.021

N.J. Rad, E. Sharifi / Discrete Applied Mathematics 🛛 (💵 🖿) 💵 – 💵

Fig. 2. The family g_1 .

From Observations 1 and 2 we obtain that for any graph G of order n and size m,

$$\alpha(G) \ge \frac{1}{3}(2n-m). \tag{1}$$

The independence number is one of the most fundamental and well-studied graph parameters (see, for example, [1,2,4–8,12]). Several improvements of (1) have been presented by several authors, (see, for example [3,10,11,13–15,17]).

Recently, Löwenstein, Pedersen, Rautenbach, and Regen [16] established the following lower bound on the independence number of a graph.

Theorem 3 (Löwenstein, Pedersen, Rautenbach and Regen, [16]). If G is a connected graph of order n and size m, then $\alpha(G) \ge 2n/3 - m/4 - 1/3$.

Henning and Löwenstein [10] improved the bound of Theorem 3 for graphs not belonging to a specific family of graphs g (see Section 2 of [10]).

Theorem 4 (Henning and Löwenstein, [10]). If $G \notin \mathcal{G}$ is a connected graph of order n and size m, then $\alpha(G) > 2n/3 - m/4$.

Our aim in this paper is to present new lower bounds for the independence number of a graph by considering the vertices of maximum degree. We also characterize graphs achieving equalities for the presented bounds. Our results improve Theorems 3 and 4 for graphs with large maximum degree.

In this paper, for a subset *S* of vertices of *G*, we denote by G - S the graph obtained from *G* by removal of *S* and also removal of all isolated vertices in $G[V(G)\setminus S]$. If $S = \{v\}$, we denote G - v instead of G - S for convenience. Let C_n , P_n and K_n be the cycle, the path, and the complete graph on *n* vertices, respectively. The following observation will be used repeatedly in the following sections.

Observation 5. For the complete graph K_n and the path P_n and the cycle C_n , $\tau(K_n) = n - 1$, $\tau(P_n) = \lceil (n-1)/2 \rceil$ and $\tau(C_n) = \lceil n/2 \rceil$.

2. Families of graphs

In this section we introduce some families of graphs which we shall use in the following sections. We refer to the graph shown in Fig. 1 as a *double-paw*. Let g_1 be the family of graphs shown in Fig. 2.

Given a family \mathcal{F} of graphs, for an integer $1 \leq t \leq \min\{\omega(F) \mid F \in \mathcal{F}\}$, we define a new family $\mathcal{F}[t]$ of graphs as follows. A graph *G* belongs to $\mathcal{F}[t]$ if and only if *G* can be obtained from a sequence $F_1, F_2, \ldots, F_k \in \mathcal{F}$, (not necessarily distinct), for some integer *k*, by coinciding a clique of order *t* in each of F_i , for $i \in [k]$. The graph F_i , $i \in [k]$, will be referred as the $F_i(G)^t$ -unit, or just the $F_i(G)$ -unit if *t* is clear. We denote by $Q_t(G)$ the coincided clique of order *t* in *G*. Note that $Q_t(G)$ is isomorphic to a clique of order *t* in every F_i , for $i \in [k]$, and for convenience, we assume that $Q_t(G)$ is a clique in every F_i , for $i \in [k]$. If $\mathcal{F} = \{F\}$, then we denote F[t], rather than $\mathcal{F}[t]$. Fig. 3 illustrates three graphs in the family $\mathcal{G}_1[1]$. In the graph G_1 , the P_3 -paths with vertex sets $\{a, b, c\}$ and $\{a, d, e\}$ are the $P_3(G_1)$ -units, the kite with vertex set $\{a, l, n, m\}$ is the *k*₄(G_1)-unit. Note that $Q_1(G_1) = \{a\}$.

Let $g_{1,1}$ be the family of graphs $G \in g_1[1]$ such that G has at least one F(G)-unit for $F \in \{K_3, K_4\}$, and the vertex in $Q_1(G)$ has minimum degree in each F(G)-unit for $F \in g_1$. Note that the vertex in $Q_1(G)$ has maximum degree in G, since G has at least one F(G)-unit for $F \in \{K_3, K_4\}$. Observe that the graph G_1 shown in Fig. 3 belongs to $g_{1,1}$ as well, while the graphs G_2 and G_3 do not belong to $g_{1,1}$.

For each positive integer *t*, we define a family $g_{i,t}$, $i \in \{2, 3, 4, 5, 6\}$ as follows.

• Let $g_{2,t}$ be the family of graphs $G \in \{F, K_{t+1}\}[t]$, where $F \in \{K_{t+5}\} \cup K_{t+4}[t+1]$, such that *G* has precisely one $K_{t+1}(G)$ -unit and one F(G)-unit, and $Q_t(G) \subseteq Q_{t+1}(F)$ if $F \neq K_{t+5}$. Two graphs in the family $g_{2,1}$, are illustrated in Fig. 4.

2

Download English Version:

https://daneshyari.com/en/article/4949794

Download Persian Version:

https://daneshyari.com/article/4949794

Daneshyari.com