MATHEMAI

Bounds on the independence number of a graph in terms of order, size and maximum degree

Nader Jafari Rad *, Elahe Sharifi
Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

A R TICLE INFO

Article history:

Received 25 May 2015
Received in revised form 29 August 2016
Accepted 9 September 2016
Available online xxxx

Keywords:

Transversal
Independence
Maximum degree

Abstract

The independence number of a graph G is the maximum cardinality of an independent set of vertices in G. In this paper we obtain several new lower bounds for the independence number of a graph in terms of its order, size and maximum degree, and characterize graphs achieving equalities for these bounds. Our bounds improve previous bounds for graphs with large maximum degree.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study independence number and transversal number in graphs. For notation and terminology not presented here we refer to [9]. Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. We denote by $n(G)$ and $m(G)$, or just n, m if G is specified, the order and size of G, respectively. For a vertex $v \in V(G)$, let $N_{G}(v)=\{u \mid u v \in E(G)\}$ denote the open neighborhood of v. The degree of a vertex $v, \operatorname{deg}_{G}(v)$, or just deg (v), in a graph G denotes the number of neighbors of v in G. We denote by $\Delta(G)$ and $\delta(G)$ the maximum degree and the minimum degree of the vertices of G, respectively. If S is a subset of $V(G)$, then we let $\delta_{G}[S]=\min \left\{\operatorname{deg}_{G}(v) \mid v \in S\right\}$. For a subset S of $V(G)$, we denote by $G[S]$ the subgraph of G induced by S. A clique is a subset of vertices such that its induced subgraph is complete. The clique number, $\omega(G)$, of a graph G is the number of vertices in a maximum clique in G. A leaf in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. An edge of G is called a pendant edge if at least one of its vertices is a leaf of G. An isolated vertex in a graph is a vertex that is not adjacent to any vertex. We use the standard notation $[k]=\{1,2, \ldots, k\}$.

A set S of vertices in a graph G is an independent set if no pair of vertices of S is adjacent. The independence number of G, denoted by $\alpha(G)$, is the maximum cardinality of an independent set in G. An independent set of cardinality $\alpha(G)$ is called an $\alpha(G)$-set. A vertex covers an edge if it is incident with the edge. A transversal in the graph G is a set of vertices that covers all the edges. We remark that a transversal is also called a vertex-cover in the literature. The transversal number of G, denoted by $\tau(G)$, is the minimum cardinality of a transversal in G. A transversal of cardinality $\tau(G)$ is called a $\tau(G)$-set. Since an isolated vertex covers no edge, we consider graphs without isolated vertices. The following are well-known.

Observation 1. For any graph G of order $n, \alpha(G)+\tau(G)=n$.
Observation 2. For every graph G of order n and size $m, \tau(G) \leqslant(n+m) / 3$.

[^0]

Fig. 1. Double-paw.

Fig. 2. The family g_{1}.

From Observations 1 and 2 we obtain that for any graph G of order n and size m,

$$
\begin{equation*}
\alpha(G) \geqslant \frac{1}{3}(2 n-m) . \tag{1}
\end{equation*}
$$

The independence number is one of the most fundamental and well-studied graph parameters (see, for example, [1,2,4-8,12]). Several improvements of (1) have been presented by several authors, (see, for example [3,10,11,13-15,17]).

Recently, Löwenstein, Pedersen, Rautenbach, and Regen [16] established the following lower bound on the independence number of a graph.

Theorem 3 (Löwenstein, Pedersen, Rautenbach and Regen, [16]). If G is a connected graph of order n and size m, then $\alpha(G) \geqslant$ $2 n / 3-m / 4-1 / 3$.

Henning and Löwenstein [10] improved the bound of Theorem 3 for graphs not belonging to a specific family of graphs \mathcal{q} (see Section 2 of [10]).

Theorem 4 (Henning and Löwenstein, [10]). If $G \notin g$ is a connected graph of order n and size m, then $\alpha(G)>2 n / 3-m / 4$.
Our aim in this paper is to present new lower bounds for the independence number of a graph by considering the vertices of maximum degree. We also characterize graphs achieving equalities for the presented bounds. Our results improve Theorems 3 and 4 for graphs with large maximum degree.

In this paper, for a subset S of vertices of G, we denote by $G-S$ the graph obtained from G by removal of S and also removal of all isolated vertices in $G[V(G) \backslash S]$. If $S=\{v\}$, we denote $G-v$ instead of $G-S$ for convenience. Let C_{n}, P_{n} and K_{n} be the cycle, the path, and the complete graph on n vertices, respectively. The following observation will be used repeatedly in the following sections.

Observation 5. For the complete graph K_{n} and the path P_{n} and the cycle $C_{n}, \tau\left(K_{n}\right)=n-1, \tau\left(P_{n}\right)=\lceil(n-1) / 2\rceil$ and $\tau\left(C_{n}\right)=\lceil n / 2\rceil$.

2. Families of graphs

In this section we introduce some families of graphs which we shall use in the following sections. We refer to the graph shown in Fig. 1 as a double-paw. Let g_{1} be the family of graphs shown in Fig. 2.

Given a family \mathcal{F} of graphs, for an integer $1 \leqslant t \leqslant \min \{\omega(F) \mid F \in \mathcal{F}\}$, we define a new family $\mathcal{F}[t]$ of graphs as follows. A graph G belongs to $\mathcal{F}[t]$ if and only if G can be obtained from a sequence $F_{1}, F_{2}, \ldots, F_{k} \in \mathcal{F}$, (not necessarily distinct), for some integer k, by coinciding a clique of order t in each of F_{i}, for $i \in[k]$. The graph $F_{i}, i \in[k]$, will be referred as the $F_{i}(G)^{t}$-unit, or just the $F_{i}(G)$-unit if t is clear. We denote by $Q_{t}(G)$ the coincided clique of order t in G. Note that $Q_{t}(G)$ is isomorphic to a clique of order t in every F_{i}, for $i \in[k]$, and for convenience, we assume that $Q_{t}(G)$ is a clique in every F_{i}, for $i \in[k]$. If $\mathcal{F}=\{F\}$, then we denote $F[t]$, rather than $\mathcal{F}[t]$. Fig. 3 illustrates three graphs in the family $\mathcal{G}_{1}[1]$. In the graph G_{1}, the P_{3}-paths with vertex sets $\{a, b, c\}$ and $\{a, d, e\}$ are the $P_{3}\left(G_{1}\right)$-units, the kite with vertex set $\{a, f, g, h\}$ is the kite $\left(G_{1}\right)$-unit, the paw with vertex set $\{a, i, j, k\}$ is the $\operatorname{paw}\left(G_{1}\right)$-unit, and the complete graph with vertex set $\{a, l, n, m\}$ is the $K_{4}\left(G_{1}\right)$-unit. Note that $Q_{1}\left(G_{1}\right)=\{a\}$.

Let $\mathcal{G}_{1,1}$ be the family of graphs $G \in \mathscr{g}_{1}[1]$ such that G has at least one $F(G)$-unit for $F \in\left\{K_{3}, K_{4}\right\}$, and the vertex in $Q_{1}(G)$ has minimum degree in each $F(G)$-unit for $F \in \mathcal{g}_{1}$. Note that the vertex in $Q_{1}(G)$ has maximum degree in G, since G has at least one $F(G)$-unit for $F \in\left\{K_{3}, K_{4}\right\}$. Observe that the graph G_{1} shown in Fig. 3 belongs to $\mathcal{G}_{1,1}$ as well, while the graphs G_{2} and G_{3} do not belong to $\mathscr{G}_{1,1}$.

For each positive integer t, we define a family $g_{i, t}, i \in\{2,3,4,5,6\}$ as follows.

- Let $g_{2, t}$ be the family of graphs $G \in\left\{F, K_{t+1}\right\}[t]$, where $F \in\left\{K_{t+5}\right\} \cup K_{t+4}[t+1]$, such that G has precisely one $K_{t+1}(G)$-unit and one $F(G)$-unit, and $Q_{t}(G) \subseteq Q_{t+1}(F)$ if $F \neq K_{t+5}$. Two graphs in the family $Q_{2,1}$, are illustrated in Fig. 4.

https://daneshyari.com/en/article/4949794

Download Persian Version:
https://daneshyari.com/article/4949794

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: n.jafarirad@gmail.com (N.J. Rad).
 http://dx.doi.org/10.1016/j.dam.2016.09.021
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

