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1. Introduction

In this paper we study independence number and transversal number in graphs. For notation and terminology not
presented here we refer to [9]. Let G = (V(G), E(G)) be a simple graph with vertex set V(G) and edge set E(G). We
denote by n(G) and m(G), or just n, m if G is specified, the order and size of G, respectively. For a vertex v € V(G), let
N¢g(v) = {u | uv € E(G)} denote the open neighborhood of v. The degree of a vertex v, deg:(v), or just deg(v), in a graph G
denotes the number of neighbors of v in G. We denote by A(G) and §(G) the maximum degree and the minimum degree of
the vertices of G, respectively. If S is a subset of V (G), then we let §¢[S] = min{deg;(v) | v € S}. For a subset S of V(G), we
denote by G[S] the subgraph of G induced by S. A clique is a subset of vertices such that its induced subgraph is complete.
The clique number, w(G), of a graph G is the number of vertices in a maximum clique in G. A leaf in a graph is a vertex of
degree one, and a support vertex is one that is adjacent to a leaf. An edge of G is called a pendant edge if at least one of its
vertices is a leaf of G. An isolated vertex in a graph is a vertex that is not adjacent to any vertex. We use the standard notation
[kl ={1,2,...,k}.

A set S of vertices in a graph G is an independent set if no pair of vertices of S is adjacent. The independence number of G,
denoted by «(G), is the maximum cardinality of an independent set in G. An independent set of cardinality «(G) is called an
o (G)-set. A vertex covers an edge if it is incident with the edge. A transversal in the graph G is a set of vertices that covers all
the edges. We remark that a transversal is also called a vertex-cover in the literature. The transversal number of G, denoted by
7(G), is the minimum cardinality of a transversal in G. A transversal of cardinality 7 (G) is called a 7 (G)-set. Since an isolated
vertex covers no edge, we consider graphs without isolated vertices. The following are well-known.

Observation 1. For any graph G of order n, «(G) + t(G) = n.
Observation 2. For every graph G of order n and size m, T(G) < (n + m)/3.
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Fig. 1. Double-paw.
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Fig. 2. The family §;.
From Observations 1 and 2 we obtain that for any graph G of order n and size m,

a(G) > %(2n—m). (1

The independence number is one of the most fundamental and well-studied graph parameters (see, for example,
[1,2,4-8,12]). Several improvements of (1) have been presented by several authors, (see, for example [3,10,11,13-15,17]).

Recently, Lowenstein, Pedersen, Rautenbach, and Regen [ 16] established the following lower bound on the independence
number of a graph.

Theorem 3 (Léwenstein, Pedersen, Rautenbach and Regen, [16]). If G is a connected graph of order n and size m, then «(G) >
2n/3 —m/4—1/3.

Henning and Léwenstein [10] improved the bound of Theorem 3 for graphs not belonging to a specific family of graphs
g (see Section 2 of [10]).

Theorem 4 (Henning and Lowenstein, [10]). If G & G is a connected graph of order n and size m, then «(G) > 2n/3 — m/4.

Our aim in this paper is to present new lower bounds for the independence number of a graph by considering the
vertices of maximum degree. We also characterize graphs achieving equalities for the presented bounds. Our results improve
Theorems 3 and 4 for graphs with large maximum degree.

In this paper, for a subset S of vertices of G, we denote by G — S the graph obtained from G by removal of S and also
removal of all isolated vertices in G[V (G)\S]. If S = {v}, we denote G — v instead of G — S for convenience. Let G, P, and K,
be the cycle, the path, and the complete graph on n vertices, respectively. The following observation will be used repeatedly
in the following sections.

Observation 5. For the complete graph K, and the path P, and the cycle C,, t(K,) = n— 1, ©(Py) = [(n — 1)/27 and
7(Cy) = [n/2].

2. Families of graphs

In this section we introduce some families of graphs which we shall use in the following sections. We refer to the graph
shown in Fig. 1 as a double-paw. Let 4, be the family of graphs shown in Fig. 2.

Given a family & of graphs, for an integer 1 < t < min{w(F) | F € ¥}, we define a new family #[t] of graphs as
follows. A graph G belongs to #[t] if and only if G can be obtained from a sequence Fy, F,, ..., F, € F, (not necessarily
distinct), for some integer k, by coinciding a clique of order t in each of F;, for i € [k]. The graph F;, i € [k], will be referred
as the F;(G)-unit, or just the F;(G)-unit if t is clear. We denote by Q;(G) the coincided clique of order t in G. Note that Q;(G)
is isomorphic to a clique of order t in every F;, for i € [k], and for convenience, we assume that Q;(G) is a clique in every
F;, fori € [k]. If # = {F}, then we denote F[t], rather than F[t]. Fig. 3 illustrates three graphs in the family 4{[1]. In the
graph Gy, the P3-paths with vertex sets {a, b, c} and {a, d, e} are the P3(G;)-units, the kite with vertex set {a, f, g, h} is the
kite(Gq)-unit, the paw with vertex set {a, i, j, k} is the paw(G)-unit, and the complete graph with vertex set {a, I, n, m} is
the K4(G)-unit. Note that Q;(G,) = {a}.

Let §4.1 be the family of graphs G € 1[1] such that G has at least one F(G)-unit for F € {K3, K4}, and the vertex in Q;(G)
has minimum degree in each F(G)-unit for F € ;. Note that the vertex in Q;(G) has maximum degree in G, since G has at
least one F(G)-unit for F € {K3, K4}. Observe that the graph G, shown in Fig. 3 belongs to 1.1 as well, while the graphs G,
and Gs do not belong to 1 1.

For each positive integer t, we define a family §;,,i € {2, 3, 4, 5, 6} as follows.

e Let G, be the family of graphs G € {F, K;1}[t], where F € {K;5}UK;;4[t+ 1], such that G has precisely one K; 1 (G)-unit
and one F(G)-unit, and Q;(G) € Q;41(F) if F # K;+s. Two graphs in the family § 1, are illustrated in Fig. 4.
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