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a b s t r a c t

In this article, using rather elementary technique and the derived formula that relates
the coefficients of a polynomial over a finite field and its derivative, we deduce many
interesting results related to derivatives of Boolean functions and derivatives of mappings
over finite fields. For instance, we easily identify several infinite classes of polynomials
which cannot possess linear structures. The same technique can be applied for deducing a
nontrivial upper bound on the degree of so-called planar mappings.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let Fq denote the Galois field of order q = pn, and let the corresponding vector space be denoted as Fn
p . For a given

polynomial F(x) ∈ Fq[x] its derivative at a ∈ F∗
q is defined as DaF(x) = F(x + a) − F(x), where clearly a = 0 results

in a trivial annihilation. In contrast to the standard notion of derivative, which is for instance useful for determination of
multiple roots of F and which coincides to the derivation of polynomials over real numbers, this notion of derivatives is of
great importance in cryptography and is directly related to differential properties of the mappings used in the substitution
boxes. Indeed, when p = 2 the differential properties of F (that reflects the resistance to differential cryptanalysis [1])
are characterized by the number of solutions of F(x + a) + F(x) = b for any a ∈ F∗

q and b ∈ Fq. On the other hand, for
fields of odd prime characteristic p > 2, if F(x + a) − F(x) is a permutation for any nonzero a then F is called a planar
function [7,5,6].

The concept of linear structures plays an important role in cryptographic applications. Certainly, for functions over finite
fields (whose prime field is binary) the substitution boxes (S-boxes) identified as a polynomial F(x) ∈ F2n [x], represented
as F(x) =

q−1
i=0 bixi, should not contain linear structures a so that F(x + a) + F(x) = b for some fixed b ∈ F2n and for

all x ∈ F2n . In this case a is called b-linear structure. A few general results are known about the form of polynomials F(x)
admitting linear structures [3,4,16,14]. The same applies to the Boolean case when f : F2n → F2 which again may be
represented as f (x) =

2n−1
i=0 aixi but the coefficients ai must satisfy certain conditions, see Section 2. In [16], the properties
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of the set of differential functions defined as DF q = {DaF(x) : F(x) ∈ Fq[x], a ∈ F∗
q} was investigated. One should notice

that there exist polynomials in Fq[x]which are not derivatives of any polynomial, thus they do not belong toDF q. Themain
result in [16] concerning the existence of linear structures is that F(x) ∈ F2n [x] is a differential function (thus F(x) ∈ DF q) if
and only if it has a 0-linear structure. This implies that the necessary condition to avoid linear structures is that F(x) ∉ DF q,
for q = 2n. In [3], the authors investigated the existence of linear structures for the mappings of the form F(x) = Tr(δxs),
where F : Fpn → Fp. For polynomials over finite fields a thorough treatment of binomials F(x) = xs + αxd was taken in
[4]. The case of the discrete integration in finite fields of characteristic two and some result on the 0-linear structures of
higher-order derivatives were studied recently in [14].

A detailed study of the cryptanalytic significance of linear structures was initiated by Evertse [9] in which cryptanalysis
of DES like ciphers are discussed along with several possible extensions. Linear structures were also considered by Nyberg
and Knudsen in the context of provable security against a differential attack [13], and later in many works e.g. [11,8,12,14].
The connection between the existence of linear structures and the differential profile of functions over finite fields is an im-
portant area of investigation in the context of the designs of S-boxes. The relevance of this area has increased significantly
due to the recent cryptographic need of development of S-boxes (vectorial Boolean functions) suitable for use in lightweight
ciphers, see for instance [10,2].

To sum up the critical technological impact of this area of research we refer to the foreword written by Bart Preneel in
the recent book by Tokareva [15] which is entirely devoted to bent functions. Preneel writes: ‘‘Perhaps the largest impact on
modern cryptography to date would be generated by the study of generalizations to vector Boolean functions that offer
strong resistance against differential and linear attacks by Nyberg and others. This work resulted in the S-box used in
the Advanced Encryption Standard (AES) that is today used in billions of devices’’. Incidentally bent functions are Boolean
functions having no linear structures whose cryptographic applications include employment in the designs of CAST, Grain
and HAVAL, as well as ‘‘non-cryptographic’’ uses in the designs of Hadamard matrices, strongly regular graphs, Kerdock
codes and CDMA sequences.

In this article we firstly derive the relationship between the coefficients bi of F(x) =
q−1

i=0 bixi and the coefficients ci of
its derivative G(x) = F(x+a)−F(x) =

q−2
i=0 cixi. This connection can be efficiently used for specifying conditions regarding

the existence of linear structures for either Boolean functions or formappings over finite fields. Though the approach is quite
elementary it leads to several important results in this direction. For instance, it is sufficient that F(x) contains the highest
polynomial degree term xq−1 so that F does not admit linear structures, which when translated into the domain of Boolean
functions corresponds to a class of functions of highest algebraic degree. Noticing that any n-variable Boolean function can
also be represented as a univariate polynomial f (x) =

q−1
i=0 bixi ∈ F2n [x], where the coefficients bi satisfy certain conditions,

we apply the same technique to either mappings over finite fields or to Boolean mappings. While the linear structures of
monomials and binomials are quite easy to handle, in general the existence of linear structures for arbitrary polynomials is
harder to analyze. Nevertheless, we provide a few interesting results in this direction covering also some particular cases
when F contains an arbitrary number of terms. Finally, using the same technique we provide a nontrivial upper bound on
the degree of planar mappings.

This article is organized as follows. Some basic definitions and notions are given in Section 2. In Section 3, some general
results (based on the derived connection between a given function and its derivative) related to the existence of linear
structures for polynomials over finite fields and for Boolean functions are presented. In Section 4, a nontrivial upper bound
on the degree of planar mappings is derived. Some concluding remarks are given in Section 5.

2. Preliminaries

Let F2 = {0, 1} denote the binary field of characteristic two. Furthermore, let F2n denote the Galois field of order 2n and
Fn
2 be its corresponding vector space (once the basis is fixed). Any function from Fn

2 or F2n to F2 is called an n variable Boolean
function, and the set of all Boolean functions in n variables is denoted by Bn. The algebraic normal form (ANF) of a Boolean
function, f on Fn

2 is a multivariate polynomial in x1, . . . , xn,

f (x1, . . . , xn) =


a∈Fn

2

µa

n
i=1

xaii , where µa ∈ F2.

The algebraic degree of f ∈ Bn, denoted by deg(f ), is defined as max{wt(a) : µa ≠ 0, a ∈ F2n}, where wt(a) denotes the
Hamming weight of a binary vector a.

For the purpose of this paper another equivalent representation of Boolean functions is also of interest. The univariate
representation of Boolean functions f : F2n → F2 is given as,

f (x) =

2n−1
i=0

aixi, ai ∈ F2n , (1)

where the coefficients ai ∈ F2n satisfy the following (Boolean conditions): a0, a2n−1 ∈ F2 and a2i (mod 2n−1) = a2i for
i = 1, . . . , 2n

− 2, due to the condition f (x)2 ≡ f (x) (mod x2
n

− x). Consequently, using the univariate representation
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