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Available online 20 September 2016 We study the 4-color problem from a different perspective. Instead of planar triangulations,

we consider near-triangulations of the plane with a face of size 4; we call any such graph
an a-graph. We state an a-graph coloring problem equivalent to the 4-color problem and

ngg‘{g;ﬁoblem then derive a coloring condition that a minimal a-graph counterexample must satisfy,
Minimal counterexample expressing it in terms of equivalence classes under Kempe exchanges. Through a systematic
Kempe exchange search, we discover a family of a-graphs that satisfy the coloring condition, the fundamental
Equivalence class member of which has order 12 and includes the Birkhoff diamond as a subgraph.
Birkhoff diamond Higher-order members include a string of Birkhoff diamonds. However, no member has

an applicable parent triangulation that is internally 6-connected, a requirement for a
minimal counterexample. Our research suggests strongly that the coloring and connectivity
conditions for a minimal counterexample are incompatible; infinitely many a-graphs meet

one condition or the other, but we find none that meets both.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Graph terminology

We use standard graph terminology. All graphs considered in this article are assumed to be planar unless otherwise
stated. V(G) denotes the vertex set of the graph G. Two vertices are adjacent if they share an edge. Such an edge is said
to be incident to the two vertices it joins. A triangulation is a graph in which all faces are delineated by three edges and a
near-triangulation is a graph in which all faces but one are delineated by three edges. In this article, we refer to the edges
delineating the sole non-triangular face in a near-triangulation as the boundary of the graph and the vertices on the boundary
as boundary vertices. Vertices not on the boundary are referred to as interior vertices. An internal path is one having no edge on
the boundary. A separating n-cycle in G has vertices of G both inside and outside the n-cycle. A connected graph is k-connected
if it has more than k vertices and remains connected whenever fewer than k vertices are deleted. In an r-regular graph, all
vertices have degree r. A proper vertex-coloring of G is a coloring of V(G) in which no two adjacent vertices have the same
color. The only graph colorings we consider are proper vertex-colorings; we often refer to them merely as colorings. We use
the numbers 1, 2, 3, 4,..., to denote the different colors available for coloring a graph. We often use the term 4-coloring to
mean any coloring using no more than 4 colors. The expression c(w) translates as the color of vertex w in the coloring c. A
Kempe chain is a maximal connected subgraph of G whose vertices in a coloring of G use only two colors. A Kempe chain
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that uses the colors j and k is referred to as a j-k chain. A vertex w colored j that is not adjacent to any vertex colored k ## j
is a single-vertex or short j-k Kempe chain. Exchanging colors j and k for such a chain is the same as changing the color of w
to k.

For purposes of this article, a Kempe exchange is a recoloring of G in which the colors j and k are exchanged in a designated,
non-empty, proper subset of all j-k Kempe chains. For example, if G has three pairwise disjoint 1-2 Kempe chains, then
exchanging colors on any one or any two counts as a single Kempe exchange.

2. Introduction

This article is primarily about discovering why the 4-color conjecture is true. No existing proof [1,2,8,9] accomplishes
that — it was never the goal. Succeeding at the endeavor may open up a new avenue by which the 4-color conjecture can
ultimately be proved without relying on a computer. Even if that turns out not to be the case, we contend that it is worthwhile
trying to understand what it is that renders the 4-color problem solvable.

In its tightest formulation, the statement of the 4-color problem is to show that any planar triangulation has a 4-coloring.
Instead of planar triangulations, we study near-triangulations of the plane in which the sole non-triangular face has size 4.
We call any such near-triangulation an a-graph because it is an “almost-triangulated-graph”. Instead of the 4-color problem,
we study the a-graph coloring problem.

The a-graph coloring problem. Let xy be any edge in an arbitrary planar triangulation T. Show that the a-graph G = T —xy
has a 4-coloring ¢ in which c(x) # c(y).

The 4-color problem and the a-graph coloring problem are trivially equivalent. Start with an uncolored T and delete the
edge xy, give the resulting G a coloring c that solves the a-graph coloring problem, then replace the edge xy to obtain a
4-coloring of T. Conversely, start with an uncolored G, insert the edge xy, give the resulting T a coloring ¢ that solves the
4-color problem, then delete the edge xy to obtain the required 4-coloring of G.

What can possibly be achieved by this near sleight-of-hand? What is the motivation for studying the a-graph coloring
problem? The answers lie in examining all distinct colorings of both T and G. Obviously, all colorings of T are colorings of
G. But there are colorings ¢ of G in which c(x) = c(y) that are not colorings of T. Generally, many of these will be Kempe-
equivalent to colorings of T. This observation underpins our approach. The key concept is to obtain a proper coloring of some
target graph, say the triangulation T, by using colorings of a related graph, say the a-graph G, that are not proper colorings of
T but are Kempe-equivalent to proper colorings of T. Suppose that any triangulation of lower order than T has a 4-coloring,
either because T is a minimal counterexample or purely as an inductive assumption. By contracting the edge xy in T rather
than deleting it, we obtain a triangulation that can be given a 4-coloring c. Upon reversing the contraction without restoring
the xy edge, we arrive at G with 4-coloring ¢ in which c(x) = c(y) and can then proceed to analyze the a-graph coloring
problem, attempting to navigate by means of Kempe exchanges from c to a 4-coloring ¢’ in which ¢’(x) # ¢/(y).

It is useful to enhance our notation regarding the designation and description of an a-graph G. We establish the
convention of always drawing G with the 4-face as an exterior face and orienting that 4-face as shown in Fig. 6.1, labeling the
boundary cycle uxvy, thus establishing (x, y) and (u, v) as the two pairs of opposite (non-adjacent) boundary vertices. Then
we can refer to the two parent triangulations of any a-graph G as G + xy and G + uv. We always denote the left-hand vertex
on the 4-face by x, the right-hand vertex by y, the bottom vertex by u, and the top vertex by v.

With respect to graph structure, the same G results whether the edge xy is deleted in the parent G + xy or the edge uv
in the parent G + uv. For some purposes, it will suffice to discuss G without reference to a specific parent triangulation, but
for many purposes it will not, and in those situations the applicable parent needs to be designated. When that is the case, G
is best thought of as two different graphs, one with parent G + xy and one with parent G + uw. In the first case, we refer to
the parented a-graph as G,y, and in the second case, we refer to the parented a-graph as G, . A helpful reminder as to which
parent is applicable is to think of G,, as having a ghost edge xy and of G, as having a ghost edge uv.

Clearly the parented a-graphs Gy, and G, can differ as to the connectivity of their respective applicable parents and we
shall see that they can also differ as to how their equivalence classes under Kempe exchanges are categorized, both matters
crucial to determining whether they can be minimal a-graph counterexamples. So, for example, Gy, might be a minimal
a-graph counterexample while G, is not. Thus the need to distinguish between them. When the a-graph coloring problem
for G applies to the (x, y) pair, we refer to G as Gyy, and when the a-graph coloring problem for G applies to the (u, v) pair, we
refer to G as G,,. When we talk about the structure of an a-graph without reference to a particular pair of opposite boundary
vertices, we simply refer to the a-graph as G. For instance, we might simply say that G has minimum degree 4.

3. Overview

In line with other work, ours is based on the notion of a minimal counterexample. To be a minimal counterexample to
the 4-color conjecture, a planar triangulation must be internally 6-connected. An internally 6-connected triangulation has
minimum degree 5 and no separating 3-cycles or 4-cycles. Further, if any separating 5-cycle is removed, at least one of the
components created has only a single vertex. A lucid description of this property can be found in both [8,9]. There are an
infinite number of internally 6-connected planar triangulations, each of which is potentially a minimal counterexample.
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