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a b s t r a c t

Given an undirected simple graphG, an integer k, and a cost cij for each pair of non-adjacent
vertices in G, a robust coloring of G is the assignment of k colors to vertices such that ad-
jacent vertices get different colors and the total penalty of the pairs of vertices having the
same color is minimum. The problem has applications in fields such as timetabling and
scheduling. We present a new formulation for the problem, which extends an existing for-
mulation for the graph coloring problem. We also discuss a column generation based solu-
tion method. We report computational study on the performance of alternative formula-
tions and the column generation method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For a given undirected graph G = (V , E), with V the set of vertices and E the set of edges, a (vertex) coloring of a graph
is an assignment of colors to vertices such that no two vertices of an edge get the same color. A k-coloring of a graph uses
k colors. The minimum number of colors necessary to color a graph is called the chromatic number of G and is denoted by
χ(G).

The graph coloring problem has its origins from the need to color maps with a minimum number of colors. The problem
dates back to 1852,when Francis Guthrie conjectured that amap could be colored using four colors, Kubale [13]. The problem
of coloring a map (which can be transformed into a planar graph) is polynomially solvable, however the problem is NP-hard
in general graphs, Karp [11]. The problemhas applications in register allocation problem for compiler optimization [8], exam
scheduling [15], frequency assignment in telecommunications [1], and course timetabling [5].

In scheduling, activities (such as duties to be assigned to operators) are represented by the vertices of a graph. Two
activities that cannot be assigned to the same operator because of a time slot or equipment clash, are connected by an
edge. Operators are assigned sets of tasks they can carry out without a clash. In timetabling, activities (such as courses or
conference sessions to be assigned to time slots) are represented by the vertices of a graph. If two courses are taken by the
same students or two conference sessions are similar in content the corresponding vertices are connected by an edge and
those activities cannot be assigned to the same time slot.

Finding an optimal coloring in the context of scheduling and timetabling requires the problem data to be known with
certainty apriori. In scheduling, activities are subject to delays. Therefore it may be undesirable to assign two activities to
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the same operator if probability of a delay is high or a possible delay is costly. Similarly, in a course timetabling problem, it
may not always be possible to create a timetable without any clashes. Furthermore, it is difficult to predict the choices of
students beforehand. Therefore, it is desirable to create a timetable where number of clashes are minimized. In conference
timetabling, two sessions that can be assigned to the same time slot can still attract the same set of people. Even though
eliminating every possible clash may be difficult, it is still possible to minimize clashes.

The robust graph coloring problem is a generalization of the original graph coloring problem. As in the original problem,
adjacent vertices are not allowed to take the same color while having the same color may only be undesirable and penalized
for other vertices in the robust version. The major difference is that the objective function is not to minimize the number of
colors but tominimize the sum of penalties due to pairs of vertices with the same color. The problem is introduced by Yáñez
and Ramírez [21]. They show that the original graph coloring problem can be too restrictive if one also considers secondary
objectives. They present an assignment type of integer linear programming (ILP) formulation and use a genetic algorithm
to solve the problem. Lim and Wang [14] use the robust graph coloring problem to model the robust aircraft assignment
problem; they employ heuristics to solve the problem. Guo et al. [9] and Kong et al. [12] also present heuristics. Wang and
Xu [20] model the problem as an unconstrained quadratic programming problem and develop new heuristics.

To the best of our knowledge, the only exact approach for the robust graph coloring problem is the column generation
approach in [2]. Archetti et al. [2] use the ILP formulation of Yáñez and Ramírez [21]. After establishing that the formulation
is only suitable for small instances, they present a branch-and-price algorithm. They use both heuristics and exact methods
to generate new columns.

We present a new ILP formulation for the robust graph coloring problem based on the asymmetric representatives
formulation of Campêlo et al. [6], which is originally used for the graph coloring problem. The formulation, introduced by
Campêlo et al. [7], uses the idea that vertices with the same color can represent each other. Furthermore, Campêlo et al. [6]
use an ordering of the vertices to create the asymmetrical representative formulation. This enhanced formulation reduces
the number of variables and different representation of color classes compared to the original representatives formulation.
Furthermore, the asymmetric representatives formulation eliminates symmetries that result from the interchangeability
of colors compared to the original formulation of Méndez-Díaz and Zabala [18]. We compare asymmetric representatives
formulation with the original formulation in [21]; we show that it performs better than the original as it yields a much
improved lower bound for the problem but is still heavily restricted by the size of the instances solved to optimality.

Even though the asymmetric representatives formulation performs better than the original formulation, it does not have
a noticeable impact on the size of the instances solved to optimality. For this reason, we use the set-covering formulation
in [2] and develop a column generation-based algorithm to solve it. Unlike Archetti et al. [2], we do not use branch-and-
price; we employ a method in [19]. Even though this method enumerates all columns in the worst case, it performs well
empirically.

In Section 2, we present our notation and the new ILP formulation based on the asymmetric representatives formulation.
In Section 3,we develop a set-covering based formulation and our columngeneration based solutionmethod. Computational
experiments are presented in these sections. We discuss the results and conclude in Section 4.

2. Asymmetric representatives formulation

Given a simple, undirected, and connected graph G = (V , E), where n = |V | is the number of vertices andm = |E| is the
number of edges, two vertices i and j are adjacent if {i, j} ∈ E. N(i) = {j ∈ V | {i, j} ∈ E} is called the neighborhood of i. An
ordering of G is a mapping σ : V → {1, . . . , n}, where σ(i) denotes the position of i in the ordering; we use an ordering of
the vertices to eliminate the symmetries in the problem. We identify each vertex with its position in the ordering, i.e., the
vertices are numbered 1, 2, . . . , n. For a given ordering of G, we call N−(i) = {1, 2, . . . , i − 1} ∩ N(i) the in-neighborhood
of i and N+(i) = {i + 1, i + 2, . . . , n} ∩ N(i) the out-neighborhood of i. Ḡ = (V , Ē) denotes the complement of G, where Ē
consists of {i, j} ∉ E; N̄(i) = {j ∈ V | {i, j} ∈ Ē} \ {i} is called the antineighborhood of i. The in- and out-antineighborhoods
of i in Ḡ are defined similarly as N̄+(i) and N̄−(i). The closed (anti)neighborhoods, where i is included, are denoted by
N[i],N−

[i],N+
[i], N̄[i], N̄−

[i], N̄+
[i]. N̄+

[i] corresponds to the vertices that can be represented by i (including itself). N̄−
[i]

corresponds to the vertices that can represent i (including itself).
We call H = (VH , EH) an induced subgraph of G if VH ⊆ V and {i, j} ∈ EH if and only if i ∈ VH , j ∈ VH and {i, j} ∈ E. H is

called a clique if all vertices inH are pairwise adjacent. Each vertex of a clique has to have a different color. An independent set
is a set of vertices, in which no two vertices are adjacent. In other words, H is an independent set if EH = ∅. In any coloring,
vertices having the same color form an independent set.

2.1. Mathematical model

We modify the asymmetric representatives formulation introduced by Campêlo et al. [6] which selects a subset of the
vertices to represent the colors. Representative vertices can represent other vertices in their out-antineighborhood. The
vertices represented by a representative vertex must form an independent set. Vertices that do not represent a color are
identified by the color of their representatives, i.e., a vertex in the in-antineighborhood of i. cij denotes a non-negative cost
associated with two vertices i and j such that {i, j} ∉ E, it can be considered as the penalty of coloring two vertices with the
same color.
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