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a b s t r a c t

This paper revisits the Boolean logical requirement of a pattern and develops 0-1 multi-
linear programming (MP) models for (Pareto-)optimal patterns for logical analysis of data
(LAD). We show that all existing and also new pattern generation models can naturally be
obtained from the MP models via linearization techniques for 0-1 multilinear functions.
Furthermore, 0-1 MP provides an insight for understanding how different and indepen-
dently developedmodels for a particular type of pattern are inter-related. These show that
0-1 MP presents a unifying theory for pattern generation in LAD.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

LAD is a Boolean logic-based data analytics methodology [14,22,35] that has aroused much interest in optimization
and data mining communities during the past two decades and has proven useful in practical decisions [1,2,4,5,24,29,31].
For separation of a finite set of two different types of observations/data, without loss of generality, a critical step in LAD
successively discovers a piece of structural information that distinguishes one or more of one type of data from all of the
other type. Such knowledge is called a pattern, which corresponds to a conjunction of literals in Boolean logic, where a literal
refers to a 0-1 feature or its negation. Patterns are the building blocks of a LAD classification theory, and the construction of
a pattern with respect to a desired pattern selection criterion forms the key stage in data analytics via LAD. The difficulty is
that pattern generation is a combinatorial optimization problem that forms the bottleneck stage in the application of LAD.

Deferring the presentation of the background material until Section 2, pattern generation approaches in the literature
can be classified as either enumeration-based [12,23,26] or optimization-based [10,20,27,35]. In note of numerical difficul-
ties associated with pattern generation, term-enumeration methods are first developed, and they rely on simple rules for
constructing terms that merely satisfy certain requirements imposed on patterns. As heuristic approaches, these have lim-
itations in identifying a pattern that is optimal or Pareto-optimal with respect to one or more pattern preference, however.
As a result, these methods ironically suffer from a poor average run-time complexity, for the number of LAD patterns made
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up of d of the total of n literals can be as many as
n
d


2d. To alleviate limitations of the term-enumeration methods in finding

useful patterns, tools have also been developed for transforming an existing pattern into a Pareto-optimal one in polynomial
run time in the number of terms of d literals for d ∈ {1, . . . , n} [3,6,26], which is exponentially many, however.

Unlike enumerationmethods, optimization-based approaches can generate optimal andPareto-optimal patterns and also
patterns of different degrees with an equal amount of efforts and suffer from the numerical complexity of the associated
optimization problem only in the worst case. In brief, for identifying a pattern with a maximum coverage among those that
distinguish a reference data Aℓ from all data of the other type, [23] first presented a polynomial set covering formulation
and used the best linear approximation of the pseudo-Boolean functions from [25] to identify a pattern that is almost an ‘Aℓ-
maximum’ pattern. Subsequently, the authors linearized the same polynomial set coveringmodel to obtain an optimization-
based approach for generating Aℓ-maximumpatterns in [10]. On a related note, [9] considers a combined pattern generation
and theory formation problem as a way to give rise to a ‘large margin’ theory that supposedly performs well in testing. The
same formulation appears in [27]within a column generation scheme for large-scale integer programming in search of away
to find ‘near/fuzzy patterns’ that perform well in testing. Although optimization-flavored, these two methods are neither
designed nor guaranteed to generate patterns, hence can be classified as heuristic methods.

For optimization-based pattern generation, [35] gave the first full treatment and presented a set of mixed integer and
linear programming (MILP)models for constructing various optimal and Pareto-optimal LADpatterns. Through extensive ex-
periments, [35] also demonstrated advantages of optimization-based approaches over enumeration-basedmethods. In [20],
a set of MILP models in a much smaller number of 0-1 decision variables was presented for a more efficient generation of
useful LAD patterns via optimization principles. Equipped with new models that are much easily solved, [20] also demon-
strated different utilities of strong prime and strong spanned patterns in their use in classifying new data.

Motivated by a surge of interest in more efficient optimization-based LAD pattern generation, this paper revisits the
Boolean logical definition of a LAD pattern and presents a unifying theory of LAD pattern generation in 0-1 MP. Specifically,
we use the Boolean logical definition of a LAD pattern to first develop 0-1 MP models for well-studied (Pareto-)optimal
LAD patterns. Next, we demonstrate that all existing pattern generation models from the literature and also new ones can
be obtained from these MPmodels via 0-1 linearization techniques for multilinear functions. Furthermore, we demonstrate
that 0-1MPprovides an insight for understanding howall different and independently developed pattern generationmodels
for a particular type of LAD pattern are inter-related. In summary, these show that 0-1MP holds a unifying theory for pattern
generation in LAD (refer Fig. 1.)

As for the organization of this paper, Section 2 provides a brief background on LAD pattern, and Section 3 develops 0-1MP
models for optimal and Pareto-optimal LAD patterns that arewell-studied in the literature. In Section 4, we useMcCormick’s
envelopes for multilinear functions, standard probing techniques in integer programming and also new valid inequalities
for 0-1 multilinear functions to demonstrate how the 0-1 MILP/IP pattern generation models from the literature and new
models can be obtained from the MP models of Section 3. As a bonus treatment, Section 5 illustrates the construction of
different pattern generation models on a small dataset and demonstrates their relative efficiency in pattern generation on
sixmachine learning benchmark datasets. Results in this section seem to indicate that the efficiency in pattern generation by
the 0-1 linearmodels is proportionally related to the advancedness of linearization techniques used for their derivation. This
invites more attention and efforts to be directed toward the development of more advanced 0-1 linearization techniques
and stronger valid inequalities for 0-1 multilinear functions. Finally, concluding remarks are provided in Section 6.

2. Background on LAD pattern

Without loss of generality, let us consider the separation of a finite number of+ and− observations/data. For • ∈ {+,−},
let us denote by S• the index set of m• observations of • type. We assume that the dataset is contradiction and duplicate
free and let S+ ∩ S− = ∅ and S = S+ ∪ S−. Denote by a1, . . . , an the n binary features that uniquely describe each data Ai,
i ∈ S. Let aij denote the binary value of the jth feature of Ai for i ∈ S.

In Boolean algebra, a term refers to a conjunction of one or more literals, where a literal is either a feature aj or its
complement ¬aj (or āj) for j ∈ N := {1, . . . , n}. Therefore, a term takes the form

T :=

j∈N1

aj

j∈N2

(¬aj),

where N1,N2 ⊆ N such that N1 ∩ N2 = ∅. We say that a term T covers Ai if

T (Ai) :=

j∈N1

aij

j∈N2

(¬aij) = 1.

In LAD, a term is called a + (−) pattern if it distinguishes at least one + (−) observation from all − (+) observations. That
is, if it covers one or more + (−) data and none of the − (+) data. (In note of the symmetry in the definitions of + and −
patterns, we deal with the generation of+ patterns in this paper for convenience in presentation.) Thus, a term T is a pattern
if and only if T (Ai) = 1 for some i ∈ S+ and T (Ai) = 0, ∀i ∈ S−.

Let us introduce n additional 0-1 features an+j to negate aj as an+j := ¬aj = 1−aj for j ∈ N . LetN ′ := {n+1, . . . , 2n} and
N := N ∪ N ′. Now, each Ai, i ∈ S, is uniquely described by 2n 0-1 features/attributes aj, j ∈ N . For constructing patterns,
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