ARTICLE IN PRESS

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Sufficient conditions on the zeroth-order general Randić index for maximally edge-connected graphs

Zhibing Chen^a, Guifu Su^{b,*}, Lutz Volkmann^c

- ^a College of Mathematics and Statistics, Shenzhen University, Guangdong 518060, PR China
- ^b School of Science, Beijing University of Chemical Technology, Beijing, 100029, PR China
- ^c Lehrstuhl II fur Mathematik, RWTH Aachen University, 52056 Aachen, Germany

ARTICLE INFO

Article history: Received 6 November 2015 Received in revised form 14 August 2016 Accepted 3 November 2016 Available online xxxx

Keywords: Edge-connectivity Maximal edge-connected graphs Zeroth-order general Randić index

ABSTRACT

Let G be a connected graph with vertex set V, minimum degree δ and edge-connectivity λ . If α is a real number, then the zeroth-order general Randić index is defined by $\sum_{x\in V} \deg^{\alpha}(x)$, where $\deg(x)$ denotes the degree of the vertex x. A graph is maximally edge-connected if $\lambda=\delta$. In this paper, we present sufficient conditions for connected graphs (resp. connected triangle-free graphs) to be maximally edge-connected in terms of the zeroth-order general Randić index, the order and the minimum degree when $\alpha\in(-\infty,0)$ or $\alpha\in(1,2]$ (resp. $\alpha\in[-1,0)\cup(1,2]$).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite and simple graph with vertex set V = V(G) and edge set E = E(G). Then the order and size of G are n = |V| and m = |E|, respectively. The *degree* of a vertex $u \in V$ is the number of edges incident to u in G, denoted by $\deg(u) = \deg_G(u)$. The minimum value of these numbers is the *minimum degree* of G, denoted by $\delta = \delta(G)$. We write K_n for the complete graph of order G. An edge-cut of a connected graph G is a set of edges whose removal disconnects G. The edge connectivity G0 of a connected graph G1 is defined as the minimum cardinality of an edge-cut over all edge-cuts of G1. An edge-cut G2 is a *minimum edge-cut*3 or a G3 connected graph G4 is immediate. We call a connected graph G5 is immediate. We call a connected graph G6 is immediate. We call a connected graph G6 is immediate. We call a connected graph G6 is edge-connected, if G6 is immediate. We call a connected graph G3 is immediate.

In this paper, we are concerned with the *zeroth-order general Randić index* which is defined for a connected graph G of order n > 2 by

$$R^0_{\alpha}(G) = \sum_{u \in V} \deg^{\alpha}(u),$$

where α is a real number. In 2005, Li and Zheng [15] proposed this index and named it the first general Zagreb index, we encourage the interested reader to consult [8,7] for more information. But nowadays, most authors refer to it as the zeroth-order general Randić index. At this point it is worth mentioning that R_2^0 and $R_{-0.5}^0$ correspond to the first Zagreb index, introduced by Gutman and co-workers [10,9], and the zeroth-order Randić index, defined by Kier and Hall [14], respectively. Some nice results on the zeroth-order general Randić index can be found, for example in [1,12,13]. The special case $\alpha = -1$

E-mail addresses: chenzb@szu.edu.cn (Z. Chen), gfs1983@126.com (G. Su), volkm@math2.rwth-aachen.de (L. Volkmann).

http://dx.doi.org/10.1016/j.dam.2016.11.002

0166-218X/© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

is the known *inverse degree* of graphs. The inverse degree first attracted attention through conjectures of the computer program Graffiti [6]. It has since been studied by several authors, see for example [3,5]. In [2], the authors present sufficient conditions for connected graphs to be maximally edge-connected in terms of the inverse degree, the order and the minimum degree.

Inspired by the results in [2], we give in this paper sufficient conditions for connected graphs (resp. connected triangle-free graphs) to be maximally edge-connected in terms of the zeroth-order general Randić index, the order and the minimum degree when $\alpha \in (-\infty, 0)$ or $\alpha \in (1, 2]$ (resp. $\alpha \in [-1, 0) \cup (1, 2]$). Examples will show that these conditions are best possible. Similar results for $\alpha \in (0, 1)$ and $\alpha \in (-\infty, -1]$ can be found in [17,18].

2. Preliminary lemmas

To obtain our main results, we first give some lemmas as necessary preliminaries. The first one is easy to prove and can be found in [16].

Lemma 2.1 ([16]). If $x_1 - 2 \ge x_2 \ge 1$, then

- (i) $(x_1-1)^{\alpha}+(x_2+1)^{\alpha}< x_1^{\alpha}+x_2^{\alpha} \text{ if } \alpha\in (-\infty,0) \text{ or } \alpha\in (1,+\infty)$;
- (ii) $(x_1 1)^{\alpha} + (x_2 + 1)^{\alpha} > x_1^{\alpha} + x_2^{\alpha}$ if $\alpha \in (0, 1)$.

Lemma 2.2. Let $\alpha < 0$ be a real number, and let x_1, x_2, \ldots, x_p and A be positive reals such that $\sum_{i=1}^p x_i \leq A$, then $\sum_{i=1}^p x_i^{\alpha} \geq p^{1-\alpha}A^{\alpha}$. If, in addition x_1, x_2, \ldots, x_p , A are positive integers, and a, b are integers with A = ap + b and $0 \leq b < p$, then $\sum_{i=1}^p x_i^{\alpha} \geq (p-b)a^{\alpha} + b(a+1)^{\alpha}$.

Proof. The first part follows by applying Jensen's Inequality. In the following we only give the proof of the rest part. Let x_1, x_2, \ldots, x_p and A be positive integers with $\sum_{i=1}^p x_i \le A$. We assume that $\{x_1', x_2', \ldots, x_p'\}$ are chosen such that $\sum_{i=1}^p x_i^{\alpha}$ is minimum. If none pair of elements in $\{x_1', x_2', \ldots, x_p'\}$ differ by more than 1, then p-b of the x_i' equal a and the remaining b of the x_i' equal a+1, and the inequality follows. So assume that two elements of $\{x_1', x_2', \ldots, x_p'\}$, say x_1' and x_2' , differ by more than 1. Without loss of generality, we assume that $x_1' > x_2'$. Let $y_1 = x_1' - 1$, $y_2 = x_2' + 1$ and $y_i = x_i'$ for $i \ge 3$. Then by Lemma 2.1(i), we have

$$\sum_{i=1}^{p} y_i^{\alpha} - \sum_{i=1}^{p} x_i^{\alpha} = (x_1' - 1)^{\alpha} + (x_2' + 1)^{\alpha} - (x_1')^{\alpha} - (x_2')^{\alpha} < 0,$$

which contradicts the choice of the $\{x_1', x_2', \dots, x_n'\}$. This implies the desired result.

The next lemma follows from the definition of convex functions and can be found in [2].

Lemma 2.3 ([2]). Let $\Phi(x)$ be a convex function on an interval [L, R]. If $l, r \in [L, R]$ and l + r = L + R, then $\Phi(L) + \Phi(R) \ge \Phi(l) + \Phi(r)$.

Lemma 2.4 ([20]). Let $x_1, x_2, ..., x_n \le t$ be positive reals such that $\sum_{i=1}^n x_i = s \le 2t$. If f(x) is a strictly convex function on (0, t), then $F(\frac{s}{n}, \frac{s}{n}, ..., \frac{s}{n}) \le F(x_1, x_2, ..., x_n) \le F(t, s - t, 0, ..., 0)$, where $F(x_1, x_2, ..., x_n) = \sum_{i=1}^n f(x_i)$.

A complete r-partite graph, denoted by K_{n_1,n_2,\dots,n_r} , is a graph whose vertices can be partitioned into $r(\geq 2)$ sets so that each pair of vertices are connected by an edge if and only if they belong to different sets of the partition.

The *Turán graph* $T_{n,r}$ is the complete r-partite graph with b partite sets of size a+1 and r-b partite sets of size a, where $a=\lfloor \frac{n}{r}\rfloor$ and b=n-ra.

The following is a famous result due to Turán [19].

Lemma 2.5 ([19]). (i) Among all the n-vertex graphs with no (r+1)-clique, $T_{n,r}$ has the maximum number of edges. (ii) $|E(T_{n,r})| \le \left| \left(1 - \frac{1}{r}\right) \cdot \frac{n^2}{2} \right|$.

For two subsets X and Y of V, let [X, Y] be the set of edges with one endpoint in X and the other one in Y, and |[X, Y]| denotes the cardinality of [X, Y].

The following lemma was proved by Dankelmann and Volkmann in [4].

Lemma 2.6 ([4]). Let G be a connected graph. If there exist two disjoint, nonempty sets $X, Y \subset V(G)$ with $X \cup Y = V(G)$ and $|[X, Y]| < \delta$, then $|X| \ge \delta + 1$ and $|Y| \ge \delta + 1$.

Lemma 2.7. Let x and α be real numbers. Then

(i)
$$x^{\alpha} + (x + \frac{1}{2})^{\alpha} \le (x + 1)^{\alpha} + (x - \frac{1}{2})^{\alpha}$$
 for $\alpha \in (-\infty, 0]$ or $\alpha \in [1, +\infty)$.
(ii) $x^{\alpha} + (x + \frac{1}{2})^{\alpha} \ge (x + 1)^{\alpha} + (x - \frac{1}{2})^{\alpha}$ for $\alpha \in (0, 1)$.

Proof. Let $f(t) = t^{\alpha} - (t - \frac{1}{2})^{\alpha}$. It is easy to see that f'(t) > 0 for $\alpha \in (-\infty, 0]$ or $\alpha \in [1, +\infty)$, and so f(t) is increasing. Hence, $f(x+1) \ge f(x)$, consequently, $(x+1)^{\alpha} - (x+\frac{1}{2})^{\alpha} \ge x^{\alpha} - (x-\frac{1}{2})^{\alpha}$. This completes the proof of (i). Since the proof of (ii) is analogous to that of (i), we omit the details here.

Download English Version:

https://daneshyari.com/en/article/4949821

Download Persian Version:

https://daneshyari.com/article/4949821

Daneshyari.com