Contents lists available at ScienceDirect

## **Discrete Applied Mathematics**

journal homepage: www.elsevier.com/locate/dam

## Counting independent sets in tree convex bipartite graphs

### Min-Sheng Lin\*, Chien-Min Chen

Department of Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan

#### ARTICLE INFO

Article history: Received 18 March 2016 Received in revised form 26 July 2016 Accepted 26 August 2016 Available online 1 December 2016

Keywords: Tree convex bipartite graphs Independent sets Maximal independent sets Independent perfect dominating sets Counting problem

#### ABSTRACT

The problems of counting independent sets, maximal independent sets, and independent perfect dominating sets are #P-complete for bipartite graphs, but can be solved in polynomial time for convex bipartite graphs, which are a subclass of bipartite graphs This paper studies these problems for tree convex bipartite graphs, which are a class of graphs between bipartite graphs and convex bipartite graphs. A bipartite graph *G* with bipartition (*X Y*) is called tree convex, if a tree *T* defined on *X* exists, such that for every vertex *y* in *Y*, the neighbors of *y* form a subtree of *T* lf the associated tree *T* is simply a path, then *G* is just a convex bipartite graph. This paper first proves that the problems of counting independent sets, maximal independent sets, and independent perfect dominating sets remain #P-complete for tree convex bipartite graphs even when the associated tree *T* is restricted to a triad, which consists of three paths with one common endpoint.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

Let G = (V, E) be a graph with set of vertices V and set of edges E. An *independent set* (IS) in G is a subset D of V such that no two vertices of D are mutually adjacent. The *maximal independent set* (MIS) is an IS that is not a subset of any other IS. A *dominating set* in G is a subset D of V such that every vertex that is not in D is adjacent to at least one vertex in D. An *independent dominating set* in G is a set of vertices of G that is both independent and dominating in G. Since every dominating set that is independent must be maximal independent, independent dominating sets are identically MISs. An independent dominating set D is an *independent perfect dominating set* (IPDS) if every vertex that is not in D is adjacent to exactly one vertex in D. Let IS(G), MIS(G), and IPDS(G) be the sets of all ISs, MISs, and IPDSs in G, respectively. Then, the inclusions  $IPDS(G) \subseteq MIS(G) \subseteq IS(G)$  hold by definitions.

This paper investigates the problems of computing the numbers of ISs, MISs, and IPDSs in a graph, denoted as #IS, #MIS, and #IPDS, respectively. Provan and Ball [10] verified that the problem #IS is #P-complete for general graphs and even for bipartite graphs. Valiant [13] defined the class of #P problems as those that involve counting access computations for problems in NP, and the class of #P-complete problems includes the hardest problems in #P. As is well known, all exact algorithms for solving #P-complete problems have exponential time complexity, so efficient exact algorithms for solving this class of problems are unlikely to exist. However, this complexity can be reduced by considering only a restricted subclass of #P-complete problems.

The complexities of the problems #IS, #MIS, and #IPDS have been extensively studied on various graphs such as bipartite graphs [10], interval graphs [7], chordal graphs [9], and tolerance graphs [8], and these complexities are presented in Fig. 1.

\* Corresponding author. E-mail address: mslin@ee.ntut.edu.tw (M.-S. Lin).

http://dx.doi.org/10.1016/j.dam.2016.08.017 0166-218X/© 2016 Elsevier B.V. All rights reserved.









Fig. 1. Inclusion relations between some graph classes.  $A \rightarrow B$  means that class A contains class B. Label at right of box that corresponds to each class indicates complexity of problems #IS (top), #MIS (middle), and #IPDS (bottom). #P-c and P denote #P-complete and polynomial-time, respectively. Symbol \* indicates a main contribution of this paper.



Fig. 2. Example of Constructions 1 and 2.

This paper concerns the class of *tree convex bipartite* graphs [5,11,6,2], which lies between bipartite graphs and convex bipartite graphs [3]. A bipartite graph G = (X, Y, E) is called *tree convex* if there exists a tree T = (X, F) such that, for each y in Y, the neighbors of y induce a subtree in T. When T is a star or a comb, G is called *star convex bipartite* or *comb convex bipartite*, respectively. A *comb graph* is a graph that is obtained by attaching a pendant leaf (tooth) to each vertex of a path (backbone). When T is a *triad tree*, which consists of three paths with a common end, G is called *triad convex bipartite*. When T is a path, G is called path convex bipartite or just *convex bipartite*.

This paper shows that the problems #IS, #MIS, and #IPDS are #P-complete even for star convex bipartite graphs and comb convex bipartite graphs, but all of these problems can be solved in polynomial time for triad convex bipartite graphs with given a triad tree.

#### 2. Hardness results

This section proves that the problems #IS, #MIS, and #IPDS for comb convex bipartite graphs and star convex bipartite graphs are #P-complete, immediately implying that all such problems for tree convex bipartite graphs are #P-complete. Before proceeding, some notation must be introduced. For a graph G = (V, E), let  $N_G(v) = \{u \in V | (u, v) \in E\}$  represent the neighborhood of a vertex v in G and  $N_G[v] = \{v\} \cup N_G(v)$  represent the closed neighborhood of a vertex v in G. For  $v \in V$  and  $V^* \subseteq V$ , let G - v represent the subgraph of G that is induced by the vertices of  $V \setminus \{v\}$  and let  $G - V^*$  represent the subgraph of G that is induced by the vertices of  $V \setminus \{v\}$ .

#### 2.1. Comb convex bipartite graphs

Theorem 1. The problem #IS for comb convex bipartite graphs is #P-complete.

**Proof.** The reduction is performed from the problem of counting the ISs in a bipartite graph, which has been proven to be #P-complete in [10].

**Construction 1.** Let G = (X, Y, E) be a bipartite graph with  $X = \{x_1, x_2, ..., x_n\}$  and  $Y = \{y_1, y_2, ..., y_m\}$ . A bipartite graph  $G_1 = (X \cup Z, Y, E \cup E')$  is constructed from G, with  $Z = \{z_1, z_2, ..., z_n\}$  and  $E' = \{(z, y) | z \in Z, y \in Y\}$ . This construction is similar to the so-called *canonical transformation* [2]. Fig. 2 shows an example of Construction 1.

The proof of Theorem 1 can be split into proofs of Claims 1.1 and 1.2.

**Claim 1.1.** *G*<sub>1</sub> is a comb convex bipartite graph.

Download English Version:

# https://daneshyari.com/en/article/4949825

Download Persian Version:

https://daneshyari.com/article/4949825

Daneshyari.com