ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the maximum number of edges in a hypergraph with given matching number

Peter Frankl

MTA Rényi Institute, Budapest, Hungary

ARTICLE INFO

Article history: Received 3 June 2015 Received in revised form 29 February 2016 Accepted 15 August 2016 Available online xxxx

Keywords: Hypergraph

ABSTRACT

The aim of the present paper is to prove that the maximum number of edges in a 3-uniform hypergraph on *n* vertices and matching number *s* is

$$\max\left\{\binom{3s+2}{3}, \binom{n}{3} - \binom{n-s}{3}\right\}$$

for all $n, s, n \ge 3s + 2$.

© 2016 Published by Elsevier B.V.

1. Introduction

Let $[n] = \{1, 2, ..., n\}$ be a finite set and $\mathcal{F} \subset {\binom{[n]}{k}}$ a *k*-uniform hypergraph. The matching number $\nu(\mathcal{F})$ is the maximum number of pairwise disjoint edges in \mathcal{F} . One of the classical problems in extremal set theory is to determine the maximum number of edges in a *k*-uniform hypergraph with matching number 1. This was solved by Erdős, Ko and Rado [5], who proved that for $n \ge 2k$ this maximum is $\binom{n-1}{k-1}$. There are two natural ways to generalize this problem for *k*-uniform hypergraphs. One is to consider the maximum number of edges for matching number 2, 3, etc. This is the problem that we shall solve in this paper for k = 3. The other one is to make the restriction "matching number is one" stronger by requiring that any two edges intersect in at least *t* elements (*t* is a fixed integer, k > t > 1). Such a family is called *t*-intersecting. Let us consider the following construction.

 $\mathcal{F}(n, k, t, i) = \{F \subset [n] : |F| = k, |F \cap [t + 2i]| \ge t + i\}.$

In 1976 the author [6] made the following conjecture. For all *n*, *k* and *t*, such that n > 2k - t, and for every *k*-uniform *t*-intersecting hypergraph \mathcal{F} on *n* vertices one has

$$|\mathcal{F}| \leq \max |\mathcal{F}(n, k, t, i)|$$

In 1987 Füredi and the author [11] showed that for every *i* in the range the conjecture is true for all pairs *n* and *k* if t > t(i), that is $|\mathcal{F}(n, k, t, i)|$ is the largest. However, it was not until ten years later that Ahlswede and Khachatrian [1] succeeded in proving the conjecture completely.

Fixing the matching number, say s, there are two very natural constructions for k-graphs with that matching number:

$$\mathcal{A}_{k} = \binom{[ks+k-1]}{k}, \text{ and}$$
$$\mathcal{A}_{1}(n) = \left\{ F \in \binom{[n]}{k} : F \cap [s] \neq \emptyset \right\}$$

E-mail address: peter.frankl@gmail.com.

http://dx.doi.org/10.1016/j.dam.2016.08.003 0166-218X/© 2016 Published by Elsevier B.V.

Please cite this article in press as: P. Frankl, On the maximum number of edges in a hypergraph with given matching number, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.08.003

2

ARTICLE IN PRESS

P. Frankl / Discrete Applied Mathematics 🛛 (💵 🎟 – 💵

In 1965 Paul Erdős made the following.

Conjecture 1.1 (Matching Conjecture [3]). If $\mathcal{F} \subset {\binom{[n]}{k}}$ satisfies $\nu(\mathcal{F}) = s$ then

 $|\mathcal{F}| \leq \max\{|\mathcal{A}_1(n)|, |\mathcal{A}_k|\}.$

In the same paper Erdős proved the conjecture for $n > n_0(k, s)$. Let us mention that the conjecture is trivial for k = 1, and it was proved for graphs (k = 2) by Erdős and Gallai [4].

There were several improvements on the bound $n_0(k, s)$. Bollobás, Daykin and Erdős [2] proved $n_0(k, s) \le 2k^3s$ and recently Huang, Loh and Sudakov [13] improved it to $n_0(k, s) \le 3k^2s$. The current record is due to the present author [9], it is $n_0(k, s) \le (2s + 1)k - s$.

The aim of the present paper is to prove

Theorem 1.1. The conjecture is true for k = 3.

We should mention that our proof relies partly on ideas from Frankl–Rödl–Ruciński [12], who proved $n_0(3, s) \le 4(s+1)$ and the recent result of Łuczak and Mieczkowska [15] who proved the conjecture for k = 3, $s > s_0$.

Let us mention that the best general bound, true for all k, s and $n \ge k(s + 1)$ is due to the author (cf. [7] or [8]) and it says

$$|\mathcal{F}| \le s \binom{n-1}{k-1}.$$
(1.1)

Note that for n = k(s + 1), (1.1) reduces to $|\mathcal{F}| \le |\mathcal{A}_k|$. This special case, the first non-trivial instance of the conjecture, was proved implicitly by Kleitman [14]. The case s = 1 of (1.1) is the classical Erdős–Ko–Rado Theorem [5].

2. Notation, tools

For a family $\mathcal{H} \subset 2^{[n]}$ and an element $i \in [n]$ we define $\mathcal{H}(i)$ and $\mathcal{H}(\overline{i})$ by

$$\begin{split} \mathcal{H}(i) &= \left\{ H - \{i\} : i \in H \in \mathcal{H} \right\}, \\ \mathcal{H}(i) &= \left\{ H \in \mathcal{H} : i \notin H \right\}. \end{split}$$

For a subset $H = \{h_1, \ldots, h_q\}$ we denote it also by (h_1, \ldots, h_q) whenever we know for certain that $h_1 < h_2 < \cdots < h_q$. For subsets $H = (h_1, \ldots, h_q)$, $G = (g_1, \ldots, g_q)$ we define the partial order, \ll by

 $H \ll G$ iff $h_i \leq g_i$ for $1 \leq i \leq q$.

Definition 2.1. The family $\mathcal{F} \subset {\binom{[n]}{k}}$ is called <u>stable</u> if $G \ll F \in \mathcal{F}$ implies $G \in \mathcal{F}$.

In Frankl [7] (cf. also [8]) it was proved that it is sufficient to prove the Matching conjecture for stable families. Therefore throughout the paper we assume that \mathcal{F} is stable and use stability without restraint.

An easy consequence of stability is the following. Let $\mathcal{F} \subset {[n] \choose k}$, $\nu(\mathcal{F}) = s$ and define $\mathcal{F}_0 = \{F \cap [ks + k - 1] : F \in \mathcal{F}\}$. Note that \mathcal{F}_0 is not *k*-uniform in general.

Proposition 2.1. $\nu(\mathcal{F}_0) = s$.

Proof. Suppose for contradiction that $G_1, \ldots, G_{s+1} \in \mathcal{F}_0$ are pairwise disjoint and $F_1, \ldots, F_{s+1} \in \mathcal{F}$ are such that $F_i \cap [ks + k - 1] = G_i$, $1 \le i \le s + 1$. Suppose further that F_1, \ldots, F_{s+1} are chosen subject to the above condition to minimize

$$\sum_{1 \le i < j \le s+1} |F_i \cap F_j|.$$
(2.1)

Since $v(\mathcal{F}) < s + 1$, the above minimum is positive. We establish the contradiction by showing that one can diminish it.

Choose some $x \in F_i \cap F_j$. Since $G_i \cap G_j = \emptyset$, $x \ge k(s+1)$. Consequently, $|G_1| + \cdots + |G_{s+1}| \le k(s+1) - 2 < ks+k-1$. Thus we can choose $y \in [ks+k-1]$ with $y \notin G_\ell$ for $1 \le \ell \le s+1$. Now replace F_i by $F'_i = (F_i - \{x\}) \cup \{y\}$. Then $F'_i \ll F_i$, implying $F'_i \in \mathcal{F}$.

The intersections $F_j \cap [ks + k - 1]$, j = 1, ..., s + 1, $j \neq i$ and $F'_i \cap [ks + k - 1]$ are still disjoint but the value of (2.1) is smaller. \Box

Please cite this article in press as: P. Frankl, On the maximum number of edges in a hypergraph with given matching number, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.08.003

Download English Version:

https://daneshyari.com/en/article/4949839

Download Persian Version:

https://daneshyari.com/article/4949839

Daneshyari.com