[Discrete Applied Mathematics](http://dx.doi.org/10.1016/j.dam.2016.08.003) (

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the maximum number of edges in a hypergraph with given matching number

Peter Frankl

MTA Rényi Institute, Budapest, Hungary

A R T I C L E I N F O

Article history: Received 3 June 2015 Received in revised form 29 February 2016 Accepted 15 August 2016 Available online xxxx

Keywords: Hypergraph

a b s t r a c t

The aim of the present paper is to prove that the maximum number of edges in a 3-uniform hypergraph on *n* vertices and matching number *s* is

$$
\max\left\{\binom{3s+2}{3},\binom{n}{3}-\binom{n-s}{3}\right\}
$$

for all *n*, *s*, $n \geq 3s + 2$.

© 2016 Published by Elsevier B.V.

1. Introduction

Let $[n]=\{1,2,\ldots,n\}$ be a finite set and $\mathcal{F}\subset\binom{[n]}{k}$ a *k*-uniform hypergraph. The matching number $\nu(\mathcal{F})$ is the maximum number of pairwise disjoint edges in $\mathcal F$. One of the classical problems in extremal set theory is to determine the maximum number of edges in a *k*-uniform hypergraph with matching number 1. This was solved by Erdős, Ko and Rado [\[5\]](#page--1-0), who proved that for $n > 2k$ this maximum is (*n*−1 *k*−1 . There are two natural ways to generalize this problem for *k*-uniform hypergraphs. One is to consider the maximum number of edges for matching number 2, 3, etc. This is the problem that we shall solve in this paper for $k = 3$. The other one is to make the restriction "matching number is one" stronger by requiring that any two edges intersect in at least *t* elements (*t* is a fixed integer, *k* > *t* > 1). Such a family is called *t*-*intersecting*. Let us consider the following construction.

 $\mathcal{F}(n, k, t, i) = \{F \subset [n] : |F| = k, |F \cap [t + 2i]| \ge t + i\}.$

.

In 1976 the author [\[6\]](#page--1-1) made the following conjecture. For all *n*, *k* and *t*, such that *n* > 2*k* − *t*, and for every *k*-uniform *t*-intersecting hypergraph $\mathcal F$ on *n* vertices one has

$$
|\mathcal{F}| \leq \max_{i} |\mathcal{F}(n, k, t, i)|.
$$

In 1987 Füredi and the author [\[11\]](#page--1-2) showed that for every *i* in the range the conjecture is true for all pairs *n* and *k* if $t > t(i)$, that is $|\mathcal{F}(n, k, t, i)|$ is the largest. However, it was not until ten years later that Ahlswede and Khachatrian [\[1\]](#page--1-3) succeeded in proving the conjecture completely.

Fixing the matching number, say *s*, there are two very natural constructions for *k*-graphs with that matching number:

$$
\mathcal{A}_k = \binom{[ks + k - 1]}{k}, \text{ and}
$$

$$
\mathcal{A}_1(n) = \left\{ F \in \binom{[n]}{k} : F \cap [s] \neq \emptyset \right\}
$$

E-mail address: [peter.frankl@gmail.com.](mailto:peter.frankl@gmail.com)

<http://dx.doi.org/10.1016/j.dam.2016.08.003> 0166-218X/© 2016 Published by Elsevier B.V.

Please cite this article in press as: P. Frankl, On the maximum number of edges in a hypergraph with given matching number, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.08.003

2 *P. Frankl / Discrete Applied Mathematics () –*

In 1965 Paul Erdős made the following.

Conjecture 1.1 (*Matching Conjecture [\[3\]](#page--1-4)*). *If* $\mathcal{F} \subset \binom{[n]}{k}$ satisfies $v(\mathcal{F}) = s$ then

 $|\mathcal{F}| \leq \max\{|\mathcal{A}_1(n)|, |\mathcal{A}_k|\}.$

In the same paper Erdős proved the conjecture for $n > n_0(k, s)$. Let us mention that the conjecture is trivial for $k = 1$, and it was proved for graphs $(k = 2)$ by Erdős and Gallai [\[4\]](#page--1-5).

There were several improvements on the bound $n_0(k, s)$. Bollobás, Daykin and Erdős [\[2\]](#page--1-6) proved $n_0(k, s) \leq 2k^3s$ and recently Huang, Loh and Sudakov [\[13\]](#page--1-7) improved it to $n_0(k,s)\leq 3k^2s$. The current record is due to the present author [\[9\]](#page--1-8), it $in_0(k, s)$ ≤ (2*s* + 1)*k* − *s*.

The aim of the present paper is to prove

Theorem 1.1. *The conjecture is true for* $k = 3$ *.*

We should mention that our proof relies partly on ideas from Frankl–Rödl–Ruciński [\[12\]](#page--1-9), who proved $n_0(3, s) \leq 4(s + 1)$ and the recent result of Łuczak and Mieczkowska [\[15\]](#page--1-10) who proved the conjecture for $k = 3$, $s > s_0$.

Let us mention that the best general bound, true for all k, *s* and $n > k(s + 1)$ is due to the author (cf. [\[7\]](#page--1-11) or [\[8\]](#page--1-12)) and it says

$$
|\mathcal{F}| \le s \binom{n-1}{k-1}.\tag{1.1}
$$

Note that for $n = k(s + 1)$, [\(1.1\)](#page-1-0) reduces to $|\mathcal{F}| < |\mathcal{A}_k|$. This special case, the first non-trivial instance of the conjecture, was proved implicitly by Kleitman [\[14\]](#page--1-13). The case $s = 1$ of [\(1.1\)](#page-1-0) is the classical Erdős–Ko–Rado Theorem [\[5\]](#page--1-0).

2. Notation, tools

For a family $\mathcal{H} \subset 2^{[n]}$ and an element $i \in [n]$ we define $\mathcal{H}(i)$ and $\mathcal{H}(\overline{i})$ by

 $\mathcal{H}(i) = \{H - \{i\} : i \in H \in \mathcal{H}\},\$ $\mathcal{H}(\vec{i}) = \{H \in \mathcal{H} : i \notin H\}.$

For a subset $H = \{h_1, \ldots, h_q\}$ we denote it also by (h_1, \ldots, h_q) whenever we know for <u>certain</u> that $h_1 < h_2 < \cdots < h_q$. For subsets $H = (h_1, \ldots, h_q)$, $G = (g_1, \ldots, g_q)$ we define the partial order, \ll by

 $H \ll G$ iff $h_i \leq g_i$ for $1 \leq i \leq q$.

Definition 2.1. The family $\mathcal{F} \subset \binom{[n]}{k}$ is called <u>stable</u> if $G \ll F \in \mathcal{F}$ implies $G \in \mathcal{F}$.

In Frankl [\[7\]](#page--1-11) (cf. also [\[8\]](#page--1-12)) it was proved that it is sufficient to prove the Matching conjecture for stable families. Therefore throughout the paper we assume that $\mathcal F$ is stable and use stability without restraint.

An easy consequence of stability is the following. Let $\mathcal{F} \subset \binom{[n]}{k}$, $\nu(\mathcal{F}) = s$ and define $\mathcal{F}_0 = \big\{ F \cap [ks + k - 1] : F \in \mathcal{F} \big\}$. Note that \mathcal{F}_0 is not *k*-uniform in general.

Proposition 2.1. $v(\mathcal{F}_0) = s$.

Proof. Suppose for contradiction that $G_1, \ldots, G_{s+1} \in \mathcal{F}_0$ are pairwise disjoint and $F_1, \ldots, F_{s+1} \in \mathcal{F}$ are such that $F_i \cap$ $[ks + k - 1] = G_i, 1 \le i \le s + 1$. Suppose further that F_1, \ldots, F_{s+1} are chosen subject to the above condition to minimize

$$
\sum_{1 \leq i < j \leq s+1} |F_i \cap F_j|.\tag{2.1}
$$

Since $v(\mathcal{F}) < s + 1$, the above minimum is positive. We establish the contradiction by showing that one can diminish it.

Choose some $x \in F_i \cap F_j$. Since $G_i \cap G_j = \emptyset$, $x \ge k(s + 1)$. Consequently, $|G_1| + \cdots + |G_{s+1}| \le k(s + 1) - 2 < k(s + k - 1)$. Thus we can choose $y \in [ks + k - 1]$ with $y \notin G_\ell$ for $1 \leq \ell \leq s + 1$. Now replace F_i by $F'_i = (F_i - \{x\}) \cup \{y\}$. Then $F'_i \ll F_i$, $implying F'_i \in \mathcal{F}.$

The intersections $F_j \cap [ks + k - 1]$, $j = 1, \ldots, s + 1$, $j \neq i$ and $F'_i \cap [ks + k - 1]$ are still disjoint but the value of [\(2.1\)](#page-1-1) is smaller. \square

Download English Version:

<https://daneshyari.com/en/article/4949839>

Download Persian Version:

<https://daneshyari.com/article/4949839>

[Daneshyari.com](https://daneshyari.com/)