On 3-uniform hypergraphs without a cycle of a given length

Zoltán Füredia ${ }^{\text {a,* }}$, Lale Özkahya ${ }^{\text {b }}$
${ }^{\text {a }}$ Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences, Budapest, P.O.Box 127, H-1364, Hungary
${ }^{\text {b }}$ Department of Computer Engineering, Hacettepe University, Beytepe, Ankara, Turkey

A R T I C L E I N F O

Article history:

Received 3 March 2015
Received in revised form 6 October 2016
Accepted 13 October 2016
Available online 3 November 2016

Keywords:

Turán number
Triangles
Cycles
Extremal graphs
Triple systems

Abstract

We study the maximum number of hyperedges in a 3-uniform hypergraph on n vertices that does not contain a Berge cycle of a given length ℓ. In particular we prove that the upper bound for $C_{2 k+1}$-free hypergraphs is of the order $O\left(k^{2} n^{1+1 / k}\right)$, improving the upper bound of Györi and Lemons (2012) by a factor of $\Theta\left(k^{2}\right)$. Similar bounds are shown for linear hypergraphs.

© 2016 Elsevier B.V. All rights reserved.

1. A generalization of the Turán problem

Counting substructures is a central topic of extremal combinatorics. Given two (hyper)graphs G and H let $N(G ; H)$ denote the number of subgraphs of G isomorphic to H. (Usually we consider a labeled host graph G.) Note that $N\left(G ; K_{2}\right)=e(G)$, the number of edges of G. More generally, $N(\mathscr{G} ; H)$ is the maximum of $N(G ; H)$ where $G \in \mathscr{G}$, a class of graphs. In most cases, in Turán type problems, \mathscr{g} is a set of n-vertex \mathcal{F}-free graphs, where \mathcal{F} is a collection of forbidden subgraphs. This maximum is denoted by $N(n, \mathcal{F} ; H)$. So $N(n, \mathcal{F} ; H)$ is the maximum number of copies of H in an \mathcal{F}-free graph on n vertices. The Turán number $\operatorname{ex}(n, \mathcal{F})$ is defined as $N\left(n, \mathcal{F} ; K_{2}\right)$. Let $\operatorname{ex}(m, n, \mathcal{F})$ be the maximum number edges in a bipartite graph with parts of order m and n vertices that do not contain any member of $\mathcal{F} . \mathcal{C}_{\ell}$ is the family of all cycles of length at most ℓ. For any graph G and any vertex x, we let $t(G)$ and $t(x)$ denote the number of triangles in G and the number of triangles containing x, respectively. Let $t_{\ell}(n):=N\left(n, C_{\ell} ; K_{3}\right)$.

Our starting point is the Bondy-Simonovits [3] theorem, ex $\left(n, C_{2 k}\right) \leq 100 k n^{1+1 / k}$. Recall two contemporary versions due to Pikhurko [15], Bukh and Z. Jiang [4], respectively, and a classical result by Kővári, T. Sós, and Turán [14]. For all $k \geq 2$ and $n \geq 1$, we have

$$
\begin{align*}
\operatorname{ex}\left(n, C_{2 k}\right) & \leq(k-1) n^{1+1 / k}+16(k-1) n \tag{1}\\
\operatorname{ex}\left(n, C_{2 k}\right) & \leq 80 \sqrt{k \log k} n^{1+1 / k}+10 k^{2} n \tag{2}\\
\operatorname{ex}\left(n, n, C_{4}\right) & \leq n^{3 / 2}+2 n \tag{3}
\end{align*}
$$

Erdős [6] conjectured that a triangle-free graph on n vertices can have at most $(n / 5)^{5}$ five cycles and that equality holds for the blown-up C_{5} if $5 \mid n$. Győri [9] showed that a triangle-free graph on n vertices contains at most $c(n / 5)^{5}$ copies of

[^0]C_{5}, where $c<1.03$. Grzesik [8], and independently, Hatami et al. [13] confirmed that Erdős' conjecture is true by using Razborov's method of flag algebras, i.e., $N\left(n, C_{3} ; C_{5}\right) \leq(n / 5)^{5}$.

Bollobás and Győri [2] asked a related question: how many triangles can a graph have if it does not contain a C_{5}. They obtained the upper bound $t_{5}(n) \leq(1+o(1))(5 / 4) n^{3 / 2}$ which yields the correct order of magnitude.

Later, Győri and Li [12] provided bounds on $t_{2 k+1}(n)$.

$$
\begin{equation*}
\binom{k}{2} \operatorname{ex}\left(\frac{n}{k+1}, \frac{n}{k+1}, \mathcal{C}_{2 k}\right) \leq t_{2 k+1}(n) \leq \frac{(2 k-1)(16 k-2)}{3} \operatorname{ex}\left(n, C_{2 k}\right) \tag{4}
\end{equation*}
$$

The construction showing the lower bound in (4) is defined by considering a balanced bipartite (X, Y)-graph G on $2 n /(k+1)$ vertices which is extremal not containing any members of $\mathcal{C}_{2 k}$. Each vertex x in X is replaced by k vertices and connected to each other and to all neighbors of x, thus creating $\binom{k}{2}$ distinct triangles per each edge of G.

In Section 3 we improve the upper bound by a factor of $\Omega(k)$.
Theorem 1. For $k \geq 2$,

$$
\begin{align*}
t_{2 k+1}(n) & :=N\left(n, C_{2 k+1} ; K_{3}\right) \leq 9(k-1) \operatorname{ex}\left(\left\lceil\frac{n}{3}\right\rceil,\left\lceil\frac{n}{3}\right\rceil, C_{2 k}\right) \tag{5}\\
t_{2 k}(n) & \leq \frac{2 k-3}{3} \operatorname{ex}\left(n, C_{2 k}\right) . \tag{6}
\end{align*}
$$

The inequalities (1), (3) and (5) give $t_{2 k+1}(n) \leq 9(k-1)^{2}((2 / 3) n)^{1+1 / k}+O(n)$ for $k \geq 3$ and $t_{5}(n) \leq \sqrt{3} n^{3 / 2}+O(n)$. This latter one is not better than the Bollobás-Győri bound. However, our constant factor in Theorem 1 is the best possible in the following sense. It is widely believed that the Turán numbers in the above statements are 'smooth', i.e., there are constants a_{k}, b_{k} depending only on k such that ex $\left(n, n, C_{2 k}\right)=\left(a_{k}+o(1)\right) n^{1+1 / k}$ and $\operatorname{ex}\left(n, n, \mathcal{C}_{2 k}\right)=\left(b_{k}+o(1)\right) n^{1+1 / k}$. If these are indeed true then the ratio of the upper bound in (5) and the lower bound in (4) is bounded by a constant factor of $O\left(a_{k} / b_{k}\right)$. It is also believed that the sequence a_{k} / b_{k} is bounded (as $k \rightarrow \infty$), so further essential improvement is probably not possible.

Since the first version of this manuscript (2011) Alon and Shikhelman [1] improved the upper bound in Theorem 1 by a constant factor to $(16 / 3)(k-1) \operatorname{ex}\left(\lceil n / 2\rceil, C_{2 k}\right)$ and showed that $t_{5}(n) \leq(1+o(1))(\sqrt{3} / 2) n^{3 / 2}$. Nevertheless, we include our proof in Section 3 for completeness, and because we use Theorem 1 in our main result in the next section.

2. Berge cycles

A Berge cycle of length k is a family of distinct hyperedges H_{0}, \ldots, H_{k-1} such that there are distinct vertices v_{0}, \ldots, v_{k-1} satisfying

$$
v_{i} v_{i+1} \subset H_{i} \text { for } 0 \leq i \leq k-1 \quad(\bmod k)
$$

A hypergraph is linear, also called nearly disjoint, if every two edges meet in at most one vertex. Let $C_{\ell}^{(3)}$ be the collection of 3-uniform Berge cycles of length ℓ.

We write $\operatorname{ex}_{r}(n, \mathcal{F})$ ($\operatorname{ex}_{r}^{\operatorname{lin}}(n, \mathcal{F})$, resp.) to denote the maximum number of hyperedges in a r-uniform (and linear, resp.) hypergraph on n vertices that does not contain any member of \mathcal{F}. Győri and Lemons [10] showed that

$$
\begin{equation*}
\operatorname{ex}\left(\left\lfloor\frac{n}{3}\right\rfloor,\left\lfloor\frac{n}{3}\right\rfloor, \mathcal{C}_{2 k}\right) \leq \operatorname{ex}_{3}\left(n, C_{2 k+1}^{(3)}\right)<4 k^{4} n^{1+\frac{1}{k}}+15 k^{4} n+10 k^{2} n \tag{7}
\end{equation*}
$$

The order of magnitude of the upper bound probably cannot be improved (as k is fixed and $n \rightarrow \infty$).
Győri and Lemons [11] extended their result to $C_{2 k}^{(3)}$-free 3-uniform hypergraphs (and also to m-uniform hypergraphs) by showing that the same lower bound as in (7) holds for $\mathrm{ex}_{3}\left(n, C_{2 k}^{(3)}\right)$ and that $\mathrm{ex}_{3}\left(n, C_{2 k}^{(3)}\right) \leq c(k) n^{1+\frac{1}{k}}$. The construction showing the lower bound in (7) is defined by considering a balanced bipartite graph G on $n / 3+n / 3$ vertices which is extremal not containing any members of $\mathcal{C}_{2 k}$. A 3-uniform $C_{2 k}^{(3)}$-free hypergraph \mathscr{H} is formed by doubling each vertex in one of the parts of G, thus turning each edge of G to a hyperedge of \mathscr{H}. The number of hyperedges in \mathscr{H} is $e(G)=\operatorname{ex}\left(n / 3, n / 3, \mathcal{C}_{2 k}\right)$.

In this paper, we make improvements on the bounds on $\operatorname{ex}_{3}\left(n, C_{2 k+1}^{(3)}\right)$ and $\mathrm{ex}_{3}\left(n, C_{2 k}^{(3)}\right)$. First, observe that trivially

$$
\begin{equation*}
t_{2 k+1}(n) \leq \operatorname{ex}_{3}\left(n, C_{2 k+1}^{(3)}\right) \tag{8}
\end{equation*}
$$

(Consider the triple system defined by the triangles of a $C_{2 k+1}$-free graph.) So (4) gives a lower bound which (probably) improves the lower bound in (7) by a factor of $\Omega(k)$.

The aim of this paper is to improve the upper bound in (7) by a factor of (at least) $\Omega\left(k^{2}\right)$ and also to simplify the original proof. In Section 4 we reduce the upper bound into three subproblems as follows.

https://daneshyari.com/en/article/4949840

Download Persian Version:

https://daneshyari.com/article/4949840

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: z-furedi@math.uiuc.edu (Z. Füredi), ozkahya@hacettepe.edu.tr (L. Özkahya).

