Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On 3-uniform hypergraphs without a cycle of a given length

Zoltán Füredi^{a,*}, Lale Özkahya^b

^a Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences, Budapest, P.O.Box 127, H-1364, Hungary ^b Department of Computer Engineering, Hacettepe University, Beytepe, Ankara, Turkey

ARTICLE INFO

Article history: Received 3 March 2015 Received in revised form 6 October 2016 Accepted 13 October 2016 Available online 3 November 2016

Keywords: Turán number Triangles Cycles Extremal graphs Triple systems

ABSTRACT

We study the maximum number of hyperedges in a 3-uniform hypergraph on n vertices that does not contain a Berge cycle of a given length ℓ . In particular we prove that the upper bound for C_{2k+1} -free hypergraphs is of the order $O(k^2n^{1+1/k})$, improving the upper bound of Győri and Lemons (2012) by a factor of $\Theta(k^2)$. Similar bounds are shown for linear hypergraphs.

© 2016 Elsevier B.V. All rights reserved.

CrossMark

1. A generalization of the Turán problem

Counting substructures is a central topic of extremal combinatorics. Given two (hyper)graphs *G* and *H* let N(G; H) denote the number of subgraphs of *G* isomorphic to *H*. (Usually we consider a labeled host graph *G*.) Note that $N(G; K_2) = e(G)$, the number of edges of *G*. More generally, $N(\mathcal{G}; H)$ is the maximum of N(G; H) where $G \in \mathcal{G}$, a class of graphs. In most cases, in Turán type problems, \mathcal{G} is a set of *n*-vertex \mathcal{F} -free graphs, where \mathcal{F} is a collection of forbidden subgraphs. This maximum is denoted by $N(n, \mathcal{F}; H)$. So $N(n, \mathcal{F}; H)$ is the maximum number of copies of *H* in an \mathcal{F} -free graph on *n* vertices. The Turán number ex (n, \mathcal{F}) is defined as $N(n, \mathcal{F}; K_2)$. Let $ex(m, n, \mathcal{F})$ be the maximum number edges in a bipartite graph with parts of order *m* and *n* vertices that do not contain any member of \mathcal{F} . \mathcal{C}_{ℓ} is the family of all cycles of length at most ℓ . For any graph *G* and any vertex *x*, we let t(G) and t(x) denote the number of triangles in *G* and the number of triangles containing *x*, respectively. Let $t_{\ell}(n) := N(n, \mathcal{C}_{\ell}; K_3)$.

Our starting point is the Bondy–Simonovits [3] theorem, $ex(n, C_{2k}) \le 100kn^{1+1/k}$. Recall two contemporary versions due to Pikhurko [15], Bukh and Z. Jiang [4], respectively, and a classical result by Kővári, T. Sós, and Turán [14]. For all $k \ge 2$ and $n \ge 1$, we have

$$ex(n, C_{2k}) \le (k-1)n^{1+1/k} + 16(k-1)n, \tag{1}$$

$$ex(n, C_{2k}) \le 80\sqrt{k\log kn^{1+1/k} + 10k^2n},$$
(2)

$$ex(n, n, C_4) \le n^{3/2} + 2n.$$
 (3)

Erdős [6] conjectured that a triangle-free graph on *n* vertices can have at most $(n/5)^5$ five cycles and that equality holds for the blown-up C_5 if 5|*n*. Győri [9] showed that a triangle-free graph on *n* vertices contains at most $c(n/5)^5$ copies of

* Corresponding author.

http://dx.doi.org/10.1016/j.dam.2016.10.013 0166-218X/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: z-furedi@math.uiuc.edu (Z. Füredi), ozkahya@hacettepe.edu.tr (L. Özkahya).

 C_5 , where c < 1.03. Grzesik [8], and independently, Hatami et al. [13] confirmed that Erdős' conjecture is true by using Razborov's method of flag algebras, i.e., $N(n, C_3; C_5) \leq (n/5)^5$.

Bollobás and Győri [2] asked a related question: how many triangles can a graph have if it does not contain a C_5 . They obtained the upper bound $t_5(n) \le (1 + o(1))(5/4)n^{3/2}$ which yields the correct order of magnitude.

Later, Győri and Li [12] provided bounds on $t_{2k+1}(n)$.

$$\binom{k}{2} \exp\left(\frac{n}{k+1}, \frac{n}{k+1}, \mathcal{C}_{2k}\right) \le t_{2k+1}(n) \le \frac{(2k-1)(16k-2)}{3} \exp(n, C_{2k}).$$
(4)

The construction showing the lower bound in (4) is defined by considering a balanced bipartite (X, Y)-graph G on 2n/(k+1)vertices which is extremal not containing any members of C_{2k} . Each vertex x in X is replaced by k vertices and connected to each other and to all neighbors of x, thus creating $\binom{k}{2}$ distinct triangles per each edge of G.

In Section 3 we improve the upper bound by a factor of $\Omega(k)$.

Theorem 1. For k > 2,

$$t_{2k+1}(n) := N(n, C_{2k+1}; K_3) \le 9(k-1) \exp\left(\left\lceil \frac{n}{3} \right\rceil, \left\lceil \frac{n}{3} \right\rceil, C_{2k}\right),$$

$$t_{2k+1}(n) \le \frac{2k-3}{2k} \exp(n C_{2k})$$
(5)

$$t_{2k}(n) \le \frac{2\pi}{3} \exp(n, C_{2k}).$$
 (6)

The inequalities (1), (3) and (5) give $t_{2k+1}(n) \le 9(k-1)^2 ((2/3)n)^{1+1/k} + O(n)$ for $k \ge 3$ and $t_5(n) \le \sqrt{3}n^{3/2} + O(n)$. This latter one is not better than the Bollobás-Győri bound. However, our constant factor in Theorem 1 is the best possible in the following sense. It is widely believed that the Turán numbers in the above statements are 'smooth', i.e., there are constants a_k , b_k depending only on k such that $ex(n, n, C_{2k}) = (a_k + o(1))n^{1+1/k}$ and $ex(n, n, C_{2k}) = (b_k + o(1))n^{1+1/k}$. If these are indeed true then the ratio of the upper bound in (5) and the lower bound in (4) is bounded by a constant factor of $O(a_k/b_k)$. It is also believed that the sequence a_k/b_k is bounded (as $k \to \infty$), so further essential improvement is probably not possible.

Since the first version of this manuscript (2011) Alon and Shikhelman [1] improved the upper bound in Theorem 1 by a constant factor to $(16/3)(k-1) \exp(\lceil n/2 \rceil, C_{2k})$ and showed that $t_5(n) \le (1+o(1))(\sqrt{3}/2)n^{3/2}$. Nevertheless, we include our proof in Section 3 for completeness, and because we use Theorem 1 in our main result in the next section.

2. Berge cycles

A Berge cycle of length k is a family of distinct hyperedges H_0, \ldots, H_{k-1} such that there are distinct vertices v_0, \ldots, v_{k-1} satisfying

$$v_i v_{i+1} \subset H_i$$
 for $0 \le i \le k-1 \pmod{k}$.

A hypergraph is *linear*, also called nearly disjoint, if every two edges meet in at most one vertex. Let $C_{\ell}^{(3)}$ be the collection of 3-uniform Berge cycles of length ℓ .

We write $\exp(n, \mathcal{F})$ ($\exp(n, \mathcal{F})$, resp.) to denote the maximum number of hyperedges in a *r*-uniform (and linear, resp.) hypergraph on *n* vertices that does not contain any member of \mathcal{F} . Győri and Lemons [10] showed that

$$\exp\left(\left\lfloor\frac{n}{3}\right\rfloor, \left\lfloor\frac{n}{3}\right\rfloor, \mathcal{C}_{2k}\right) \le \exp_3(n, \mathcal{C}_{2k+1}^{(3)}) < 4k^4 n^{1+\frac{1}{k}} + 15k^4 n + 10k^2 n.$$

$$\tag{7}$$

The order of magnitude of the upper bound probably cannot be improved (as *k* is fixed and $n \to \infty$).

Győri and Lemons [11] extended their result to $C_{2k}^{(3)}$ -free 3-uniform hypergraphs (and also to *m*-uniform hypergraphs) by showing that the same lower bound as in (7) holds for $ex_3(n, C_{2k}^{(3)})$ and that $ex_3(n, C_{2k}^{(3)}) \le c(k)n^{1+\frac{1}{k}}$. The construction showing the lower bound in (7) is defined by considering a balanced bipartite graph G on n/3+n/3 vertices which is extremal not containing any members of C_{2k} . A 3-uniform $C_{2k}^{(3)}$ -free hypergraph \mathcal{H} is formed by doubling each vertex in one of the parts of G, thus turning each edge of G to a hyperedge of \mathcal{H} . The number of hyperedges in \mathcal{H} is $e(G) = ex(n/3, n/3, C_{2k})$. In this paper, we make improvements on the bounds on $ex_3(n, C_{2k+1}^{(3)})$ and $ex_3(n, C_{2k}^{(3)})$. First, observe that trivially

$$t_{2k+1}(n) \le \exp_3(n, C_{2k+1}^{(3)}).$$
 (8)

(Consider the triple system defined by the triangles of a C_{2k+1} -free graph.) So (4) gives a lower bound which (probably) improves the lower bound in (7) by a factor of $\Omega(k)$.

The aim of this paper is to improve the upper bound in (7) by a factor of (at least) $\Omega(k^2)$ and also to simplify the original proof. In Section 4 we reduce the upper bound into three subproblems as follows.

Download English Version:

https://daneshyari.com/en/article/4949840

Download Persian Version:

https://daneshyari.com/article/4949840

Daneshyari.com