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a b s t r a c t

We study the maximum number of hyperedges in a 3-uniform hypergraph on n vertices
that does not contain a Berge cycle of a given length ℓ. In particular we prove that the
upper bound for C2k+1-free hypergraphs is of the order O(k2n1+1/k), improving the upper
bound of Győri and Lemons (2012) by a factor ofΘ(k2). Similar bounds are shown for linear
hypergraphs.

© 2016 Elsevier B.V. All rights reserved.

1. A generalization of the Turán problem

Counting substructures is a central topic of extremal combinatorics. Given two (hyper)graphsG andH letN(G ;H) denote
the number of subgraphs of G isomorphic toH . (Usually we consider a labeled host graph G.) Note that N(G ; K2) = e(G), the
number of edges of G. More generally, N(G ;H) is the maximum of N(G ;H) where G ∈ G, a class of graphs. In most cases, in
Turán type problems, G is a set of n-vertex F -free graphs, where F is a collection of forbidden subgraphs. This maximum is
denoted by N(n, F ;H). So N(n, F ;H) is the maximum number of copies of H in an F -free graph on n vertices. The Turán
number ex(n, F ) is defined as N(n, F ; K2). Let ex(m, n, F ) be the maximum number edges in a bipartite graph with parts
of order m and n vertices that do not contain any member of F . Cℓ is the family of all cycles of length at most ℓ. For any
graph G and any vertex x, we let t(G) and t(x) denote the number of triangles in G and the number of triangles containing x,
respectively. Let tℓ(n) := N(n, Cℓ ; K3).

Our starting point is the Bondy–Simonovits [3] theorem, ex(n, C2k) ≤ 100kn1+1/k. Recall two contemporary versions due
to Pikhurko [15], Bukh and Z. Jiang [4], respectively, and a classical result by Kővári, T. Sós, and Turán [14]. For all k ≥ 2 and
n ≥ 1, we have

ex(n, C2k) ≤ (k − 1)n1+1/k
+ 16(k − 1)n, (1)

ex(n, C2k) ≤ 80

k log kn1+1/k

+ 10k2n, (2)

ex(n, n, C4) ≤ n3/2
+ 2n. (3)

Erdős [6] conjectured that a triangle-free graph on n vertices can have at most (n/5)5 five cycles and that equality holds
for the blown-up C5 if 5|n. Győri [9] showed that a triangle-free graph on n vertices contains at most c(n/5)5 copies of
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C5, where c < 1.03. Grzesik [8], and independently, Hatami et al. [13] confirmed that Erdős’ conjecture is true by using
Razborov’s method of flag algebras, i.e., N(n, C3 ; C5) ≤ (n/5)5.

Bollobás and Győri [2] asked a related question: how many triangles can a graph have if it does not contain a C5. They
obtained the upper bound t5(n) ≤ (1 + o(1))(5/4)n3/2 which yields the correct order of magnitude.

Later, Győri and Li [12] provided bounds on t2k+1(n).
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≤ t2k+1(n) ≤

(2k − 1)(16k − 2)
3

ex(n, C2k). (4)

The construction showing the lower bound in (4) is defined by considering a balanced bipartite (X, Y )-graph G on 2n/(k+1)
vertices which is extremal not containing any members of C2k. Each vertex x in X is replaced by k vertices and connected to
each other and to all neighbors of x, thus creating


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
distinct triangles per each edge of G.

In Section 3 we improve the upper bound by a factor of Ω(k).

Theorem 1. For k ≥ 2,

t2k+1(n) := N(n, C2k+1 ; K3) ≤ 9(k − 1) ex
n

3


,
n
3


, C2k


, (5)

t2k(n) ≤
2k − 3

3
ex(n, C2k). (6)

The inequalities (1), (3) and (5) give t2k+1(n) ≤ 9(k−1)2 ((2/3)n)1+1/k
+O(n) for k ≥ 3 and t5(n) ≤

√
3n3/2

+O(n). This
latter one is not better than the Bollobás–Győri bound. However, our constant factor in Theorem 1 is the best possible in the
following sense. It is widely believed that the Turán numbers in the above statements are ‘smooth’, i.e., there are constants
ak, bk depending only on k such that ex(n, n, C2k) = (ak + o(1))n1+1/k and ex(n, n, C2k) = (bk + o(1))n1+1/k. If these are
indeed true then the ratio of the upper bound in (5) and the lower bound in (4) is bounded by a constant factor ofO(ak/bk). It
is also believed that the sequence ak/bk is bounded (as k → ∞), so further essential improvement is probably not possible.

Since the first version of this manuscript (2011) Alon and Shikhelman [1] improved the upper bound in Theorem 1 by a
constant factor to (16/3)(k − 1) ex(⌈n/2⌉, C2k) and showed that t5(n) ≤ (1 + o(1))(

√
3/2)n3/2. Nevertheless, we include

our proof in Section 3 for completeness, and because we use Theorem 1 in our main result in the next section.

2. Berge cycles

A Berge cycle of length k is a family of distinct hyperedges H0, . . . ,Hk−1 such that there are distinct vertices v0, . . . , vk−1
satisfying

vivi+1 ⊂ Hi for 0 ≤ i ≤ k − 1 (mod k).

A hypergraph is linear, also called nearly disjoint, if every two edges meet in at most one vertex. Let C (3)
ℓ be the collection of

3-uniform Berge cycles of length ℓ.
We write exr(n, F ) (exlinr (n, F ), resp.) to denote the maximum number of hyperedges in a r-uniform (and linear, resp.)

hypergraph on n vertices that does not contain any member of F . Győri and Lemons [10] showed that
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≤ ex3(n, C

(3)
2k+1) < 4k4n1+ 1

k + 15k4n + 10k2n. (7)

The order of magnitude of the upper bound probably cannot be improved (as k is fixed and n → ∞).
Győri and Lemons [11] extended their result to C (3)

2k -free 3-uniform hypergraphs (and also to m-uniform hypergraphs)
by showing that the same lower bound as in (7) holds for ex3(n, C

(3)
2k ) and that ex3(n, C

(3)
2k ) ≤ c(k)n1+ 1

k . The construction
showing the lower bound in (7) is defined by considering a balanced bipartite graphG onn/3+n/3 verticeswhich is extremal
not containing any members of C2k. A 3-uniform C (3)

2k -free hypergraph H is formed by doubling each vertex in one of the
parts of G, thus turning each edge of G to a hyperedge of H . The number of hyperedges in H is e(G) = ex(n/3, n/3, C2k).

In this paper, we make improvements on the bounds on ex3(n, C
(3)
2k+1) and ex3(n, C

(3)
2k ). First, observe that trivially

t2k+1(n) ≤ ex3(n, C
(3)
2k+1). (8)

(Consider the triple system defined by the triangles of a C2k+1-free graph.) So (4) gives a lower bound which (probably)
improves the lower bound in (7) by a factor of Ω(k).

The aim of this paper is to improve the upper bound in (7) by a factor of (at least) Ω(k2) and also to simplify the original
proof. In Section 4 we reduce the upper bound into three subproblems as follows.
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