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a b s t r a c t

Since its introduction in 1969, the set partitioning problem has received much attention,
and the structure of its feasible domain has been studied in detail. In particular, there
exists a decreasing sequence of integer feasible points that leads to the optimum, such
that each solution is a vertex of the polytope of the linear relaxation and adjacent to the
previous one. Several algorithms are based on this observation and aim to determine that
sequence; one example is the integral simplex using decomposition (ISUD) of Zaghrouti
et al. (2014). In ISUD, the next solution is often obtained by solving a linear programwithout
using any branching strategy. We study the influence of the normalization-weight vector
of this linear program on the integrality of the next solution. We extend and strengthen
the decomposition theory in ISUD, prove theoretical properties of the generic and specific
normalization constraints, and propose new normalization constraints that encourage
integral solutions. Numerical tests on scheduling instances (with up to 500,000 variables)
demonstrate the potential of our approach.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the set partitioning problem (SPP)

z⋆
SPP = min

x


cTx | Ax = e , 0 ≤ x ≤ e , x is integer


(SPP)

where A ∈ {0, 1}m×n is an m × n binary matrix, and c ∈ Nn is the cost vector. The vector of all zeros (resp. ones) with
dimension dictated by the context is denoted 0 (resp. e). Without loss of generality, we assume that A is full rank, contains
no zero rows or columns, and has no identical rows or columns. Ax = e are called the linear constraints and 0 ≤ x ≤ e the
bound constraints. FSPP denotes the set of all feasible solutions of SPP; z⋆

SPP is called the optimal value (or optimum) of SPP;
and any feasible solution x⋆

∈ FSPP such that cTx⋆
= z⋆

SPP is called an optimal solution of SPP. Note that, given the bounds (0
and e) and the integrality constraints,FSPP contains only 0–1 vectors, i.e.,FSPP ⊆ {0, 1}n. Finally, the linear relaxation of SPP,
denoted SPPRL, is the linear program obtained by removing the integrality constraints of SPP. Its feasible domain and optimal
value are respectively denoted FSPPRL and z⋆

SPPRL
. Note that all optimization programs will be written in their minimization

form, but the ideas and results also apply to maximization scenarios.
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1.1. Integral simplex methods for the set partitioning problem

Since its introduction by Garfinkel and Nemhauser in 1969 [5], the set partitioning problem has receivedmuch attention
because of its wide range of applications: vehicle and crew scheduling, clustering problems, etc. It often appears within
column-generation frameworks for such problems.

Many algorithms have been developed to solve SPP. As is the case for generic integer linear programs, they can be
classified into three main classes [10]: dual fractional, dual integral, and primal (or augmentation) methods. Dual fractional
algorithms maintain optimality and linear-constraint feasibility at every iteration, and they stop when integrality is
achieved. They are typically standard cutting plane procedures such as Gomory’s algorithm [7]. The classical branch-and-
bound scheme is also based on a dual-fractional approach, in particular for the determination of lower bounds. Dual integral
methods maintain integrality and optimality, and they terminate once the primal linear constraints are satisfied. Letchford
and Lodi [10] give a single example: another algorithm of Gomory [8]. Finally, primal algorithms maintain feasibility (and
integrality) throughout the process and stop when optimality is reached. These are in fact descent algorithms for which the
improving sequence (xk)k=1...K satisfies the following conditions:

C1 xk ∈ FSPP;
C2 xK is optimal;
C3 cTxk+1 < cTxk.

A sequence satisfying the three conditions is called a sequence of augmenting solutions even in a minimization problem.
Given a current solution xk ∈ FSPP, primal algorithms are in fact based on the iterative solution of the augmentation

problem defined as:

AUG Find an augmenting vector y ∈ Nn s.t. xk+1 = (xk + y) ∈ FSPP and cTy < 0 or assert
that xk is optimal for SPP.

Traditionally, papers on constraint aggregation and integral simplex algorithms deal with minimization problems,
whereas most authors present generic primal algorithms for maximization problems. We therefore draw the reader’s
attention to the following: to retain the usual classification,we call the improvement problemAUG, although it supplies
a decreasing direction. For further information on primal algorithms in a general context, see the review of Spille and
Weismantel [19].

Two special features of SPPmake it a particularly promising candidate for specialized primalmethods. First, by definition,
SPP is a 0–1 program, so every (integer) point ofFSPP is an extreme point (or vertex) ofFSPPRL . Thus, there exists a decreasing
sequence of basic solutions satisfying conditionsC1–C3. Second, as shownbyTrubin et al. [21], SPP is quasi-integral, i.e., every
edge of Conv


FSPP


is an edge of FSPPRL . Thus, there exists a sequence of augmenting solutions such that the following

condition holds:

C4 xk+1 is an adjacent vertex of xk in FSPPRL .

An augmentation that satisfies C4 is called an integral augmentation. Any sequence satisfying C1–C4 is a sequence of
augmenting adjacent solutions, and an algorithm that yields such a sequence is an integral simplex. Every solution can be
obtained from the previous one in the sequence by performing one or several simplex pivots in SPPRL, hence the name.
Such sequences were first introduced by Balas and Padberg [1]. Several other authors (Haus et al. [9], Thompson [20],
Saxena [17]) have presented enumeration schemes that move from one integer solution to an adjacent one. An important
recent contribution, in terms of both theory and applications, has been made by Rönnberg and Larsson [12–14]. However,
none of these enumeration methods can guarantee a strict improvement (C3). They may perform degenerate pivots, in
which there is no effective change in the solution (or the objective value) because the entering variable(s) takes the value
zero. SPP tends to suffer severe degeneracy, so the computational time of these algorithms grows exponentially with the
size of the instances.

Another pivot-basedmethod proposed in the same spirit is the integral simplex using decomposition (ISUD) of Zaghrouti
et al. [22]. It is one of the most promising recent developments, because it is based on linear programming techniques that
take advantage of degeneracy and guarantee strict improvement at each iteration (see [3,11]). It follows an augmenting
sequence of integer points leading to an optimal solution, such that each visited point is a vertex of FSPPRL adjacent to
the previous one (integral simplex). To find the edge leading to the next point, one solves a linear program to select an
augmenting direction for the current point from a cone of feasible directions. To ensure that this linear program is bounded
(the directions could go to infinity), a normalization constraint is added and the optimization is performed on a section of
the cone. The solution of the linear program, i.e., the direction proposed by the algorithm, depends strongly on the chosen
normalizationweights, and so does the likelihood that the next solution is integer. In their seminal paper, Zaghrouti et al. [22]
consider all the weights to be equal to 1 in the normalization constraint; they therefore call it the convexity constraint. We
extend the algorithm to the case of a generic normalization constraint, explore the theoretical properties of some specific
constraints, and discuss the design of the normalization constraint based on our theoretical observations. We also report
preliminary computational results that compare different normalization strategies and highlight their influence on the
behavior of the algorithm.
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