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a b s t r a c t

We address the problem of minimizing a half-product function, with and without a
linear knapsack constraint. We show how to convert known fully polynomial-time
approximation schemes to differential approximation schemes that handle the problems
with and without an additive constant and with and without a linear knapsack constraint.
Thereby, we resolve the issue of differential approximation for a range of scheduling
problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The half-product function is a special form of a (pseudo) Boolean quadratic function that has been studied since the
1990s. Let x = (x1, x2, . . . , xn) be a vector with n Boolean components. Consider the function

h (x) =

n
1≤i<j≤n

αiβjxixj −
n

j=1

γjxj, (1)

where for each j, 1 ≤ j ≤ n, the coefficients αj, βj and γj are non-negative integers. This function and the term ‘‘half-
product’’ were introduced by Badics and Boros [3], who considered the problem of its minimization. The function h (x) is
called a half-product since its quadratic part consists of roughly half of the terms of the product

n
j=1 αjxj

 n
j=1 βjxj


.

In this paper, we consider the problem of minimizing h (x) as well as several related problems. Notice that we only are
interested in the instances of the problem for which the minimum value of the function is strictly negative; otherwise,
setting all decision variables to zero solves the corresponding problem.

Partly, the interest in the problems of minimizing the functions related to the half-product is due to their applications
to scheduling problems with min-sum objective functions. Notice that in those applications a scheduling objective function
usually is written in the form

f (x) = h (x)+ K , (2)

where K is a given additive constant; see [6,17,18] for reviews.
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Another range of scheduling applications is related to the problems of minimizing functions similar to h (x) or f (x)
subject to a linear knapsack constraint

n
j=1 αjxj ≤ A; see [17,18] for reviews. In the knapsack constraint, the value αj can

be understood as the weight of item j, 1 ≤ j ≤ n, i.e., xj = 1 means that item j is placed into a knapsack of capacity A, while
xj = 0 means that the corresponding item is not placed into the knapsack. Notice that the coefficients αj in the knapsack
constraint are the same as in the quadratic terms of the objective function.

For the introduced problems of Boolean programming, it is often convenient to reformulate the objective function not as
a function of 0 − 1 variables, but as a set-function.

We illustrate this for the half-product function h(x) of the form (1). For a set N = {1, 2, . . . , n}, let 2N denote the family
of all subsets of N . For an n-dimensional vector p = (p1, p2, . . . , pn) define p(S) =


j∈S pj for every non-empty set S ∈ 2N

and define p(∅) = 0.
Given a function ϕ (x)with Boolean arguments xj ∈ {0, 1}, we can associate it with a set-function ϕ (S). More precisely,

a Boolean vector x = (x1, x2, . . . , xn) can be associated with a set S ∈ 2N in such away that element j ∈ N belongs to S if and
only if xj = 1. From now on, we see the Boolean and the set representation of a function as equivalent, and use both types of
notation, ϕ (x) and ϕ (S), whichever is more convenient. See [7] for a detailed discussion of the link between set-functions
and Boolean functions.

In the case of the half-product function, for a vector x, we can rewrite h(x) in the set-function form as

h (S) =


i,j∈S; i<j;

αiβj − γ (S) . (3)

Then, the problem of minimizing h(x) can be understood as the problem of finding a set-minimizer S∗ such that the
inequality h (S∗) ≤ h (S) holds for all sets S ∈ 2N . In a similar way, introduce a set-maximizer S∗ such that h (S∗) ≥ h (S)
holds for all sets S ∈ 2N .

A set-function ϕ (S) is called monotone non-decreasing if ϕ (A) ≤ ϕ (B) holds for any pair of sets A ⊆ B. Notice that the
half-product function h (S) in general is not monotone. Moreover, throughout this paper we assume that a set-minimizer
S∗ and a set-maximizer S∗ satisfy the conditions

h(S∗) < 0 = h (∅) < h(S∗). (4)

In terms of the set-functions ϕ ∈ {h, f }, the problems that we consider can be formulated asmin

ϕ (S) |S ∈ 2N


if no ad-

ditional constraints are imposed, and as min

ϕ (S) |α (S) ≤ A, S ∈ 2N


, if an additional knapsack constraint is introduced.

The maximization counterparts of these problems are defined as max

ϕ (S) |S ∈ 2N


and max


ϕ (S) |α (S) ≤ A, S ∈ 2N


,

respectively.
Problem min


h (S) |S ∈ 2N


is NP-hard, as proved in [3]. The main focus of the paper is on design and analysis of

approximation algorithms and schemes for the problems of minimizing half-product related functions.
We now recall the definitions related to approximation. In terms of set-functions, for a problem of minimizing a

function ϕ (S) which may take negative and positive values, a set Sε is called an ε-approximate solution if for a given
positive ε the inequality ϕ (Sε) − ϕ (S∗) ≤ ε |ϕ (S∗)| holds. A family of algorithms that for any given positive ε find an
ε-approximate solution is called a Fully Polynomial-Time Approximation Scheme (FPTAS), provided that the running time
depends polynomially on both the length of the input and 1/ε.

The definitions introduced above are most traditional, since they measure the quality of an approximate solution in
terms of relative errors. An alternative measure, which has received considerable attention is related to so-called differential
approximation. Without going into technicalities, here we only mention that according to the differential approximation
paradigm the quality of a solution ϕ (SH) is judged by its position in the interval [ϕ (S∗) , ϕ(S∗)]. See [1] and [5] for details. In
particular, for any positive ε a Differential Fully Polynomial-Time Approximation Scheme (DFPTAS) for minimizing a function
ϕ (S) delivers a feasible set Sε such that ϕ (Sε) ≤ (1 − ε) ϕ (S∗) + εϕ(S∗) and its running time depends polynomially on
both the length of the input and 1/ε.

There are several aspects that have provided motivations to this study.

1. The minimization problems min

f (S) |S ∈ 2N


and min


f (S) |α (S) ≤ A, S ∈ 2N


serve as mathematical models of

a range of scheduling problems, therefore approximation results available for these problems of quadratic Boolean
programming can be adapted for various scheduling applications; see [6,17] as well as Section 4 of this paper.

2. Problem min

h (S) |S ∈ 2N


admits a fast FPTAS due to [6], which cannot always be converted into an FPTAS for

problem min

f (S) = h (S)+ K |S ∈ 2N


with an additive constant. However, handling additive constant is very easy

for differential approximation algorithms.
3. Multiple results on differential approximation for various problems of combinatorial optimization are known, often

producing a striking contrast with traditional approximation results. There is a lack of differential approximation results
for scheduling problems. An exception is the paper [12], where a differential approximation algorithm (not a DFPTAS) is
presented for the single machine problem of minimizing the weighted sum of the completion times subject to a single
machine non-availability period. The latter problem is one of those which can be reformulated in terms of problem
min


f (S) |α (S) ≤ A, S ∈ 2N


. Thus, a natural question arises of deriving differential approximation results for problems

similar to min

f (S) |α (S) ≤ A, S ∈ 2N


and therefore for the whole range of the relevant scheduling applications.
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