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a b s t r a c t

We present constant-work-space polynomial time algorithms for solving the shortest
path problem, finding the chromatic polynomial, clique number, number of components,
circumference, and girth of cactus graphs and block graphs. For some of these problemswe
also present in-place algorithms, which perform faster than the corresponding constant-
work-space algorithms. The problems considered are fundamental to many areas of graph
theory, computational geometry, and combinatorial optimization, and have a wide range
of applications including transportation, robotics, and image processing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Space efficiency is a central aspect of algorithm design and has been investigated in the framework of many important
problems. The constant-work-space computational model, also known in complexity theory as the log-space model, entails
algorithms which use a read-only input array and O(1) cells of working memory; the in-place model uses a read–write
input array and O(1) working memory. In this paper, we present constant-work-space and in-place algorithms for solving
the shortest path problem in block graphs and cactus graphs. These algorithms improve the time complexity of our earlier
work [9] while preserving space efficiency. We also present constant-work-space and in-place algorithms for finding the
clique number, circumference, girth, number of components, and chromatic polynomials of cactus graphs and block graphs.
As a rule, due to time–space trade-off, improved space-efficiency is achieved on the account of higher time-complexity.

Cactus and block graphs are well-studied families with numerous applications. Different types of cactus graphs are
classified and enumerated in [7,19]; see also the bibliography therein for problems in the theory of condensation in
statistical mechanics where such graphs arise in a natural way. Cactus graphs can also be used to model loop feeder
telecommunications networks, material handling networks for automated guided vehicles, and the combination of local
area networks formed by ring and bus structures [13]. They have also recently been used to compare, analyze, and visualize
sets of related genomes [6]. Block graphs are of interest in convex geometry, as they are the only graphs for which connected
subsets of vertices form a convex geometry [15] and where every set of vertices has a unique minimal connected superset
whose closure is in the convex geometry. Block graphs are also used to decompose general graphs into the intersection
graphs of their biconnected components.

There are a number of constant-work-space algorithms for the shortest path problem and other graph problems, typically
over special types of graphs. Das et al. [14] give constant-work-space algorithms for finding shortest and longest paths and
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matchings in k-trees. Munro and Ramirez [25] give a space efficient algorithm for shortest paths in complete level networks
(a family of k-partite graphs). Asano et al. [4] give constant-work-space algorithms for shortest paths in trees and simple
polygons; some ideas and techniques developed in [4] are adapted in the present paper. Jakoby et al. [22] give constant-
work-space algorithms for shortest and longest paths in series–parallel graphs, by reducing the problem to one that is known
to be solvable with O(log n) space and O(nc) time ‘‘for some constant c significantly larger than 1’’ [21]. In contrast, we focus
on developing space-efficient algorithms which have a low order time complexity as well.

For general graphs, the shortest path problem can be solved in linear space by the Bellman–Ford algorithm. However,
there is no known constant-work-space algorithm for this problem, and its existence is unlikely. In fact, the shortest path
problem for general weighted graphs is NL-complete, so the existence of a constant-work-space algorithm would imply
that NL = L [22]. The Floyd–Warshall algorithm [18] and its various enhancements (cf. [29]) are in-place shortest path
algorithms for general graphs, but only yield the length of a desired shortest path and cannot print the path itself without
additional (non-constant) space. Moreover, a graph is optimally stored (with respect to space) using adjacency lists, which
is not a suitable representation for the Floyd–Warshall algorithm.

The shortest path problem has applications in transportation, robotics, facility layout, VLSI design, and autonomous
guidance for pilotless aircraft [12]. The need to solve the shortest path problem also arises in image processing, for tasks
like segmenting medical images [32,35] and extracting the shape of a cognitive map [16] as well as in numerous binary
image processing problems (see [20,26,27]). Several geometric variants of the shortest path problem are studied in [31] and
the Voronoi diagram is introduced as an efficient solution method.

Aside from graph theoretic problems, space efficient algorithms have also been designed for problems in computational
geometry like finding convex hulls, Delaunay triangulations, and nearest neighbors [8,10,11], and for problems in image
processing like connected components labeling, intensity image thresholding, and rotated image restoration [1]. Asano
[33,2,3] describes additional applications of space-efficient algorithms to image processing. Space efficient algorithms are
often advantageous in embedded systems where storage space is very limited. Consumer electronics like GPS receivers,
printers, and DVD players frequently have a small and inflexible working memory which cannot be easily increased.
Furthermore, the firmware for these devices is usually stored on flash memory cells, which are much faster at reading than
writing. Thus, constant-work-space algorithms are suitable for this setting, since their input is a read-only array.

An important result under the constant-work-space computationalmodel (which is referred to in the sequel) is Reingold’s
deterministic polynomial time algorithm [30] for the undirected st-connectivity problem (USTCON) of determiningwhether
two vertices in an undirected graph belong to the same connected component. There are also a number of randomized
algorithms for USTCON which perform faster than Reingold’s algorithm but whose output may be incorrect with a certain
small probability. For instance, Barnes and Feige [5,17] and Kosowski [23] provide fast randomized algorithms for USTCON
with improved time–space trade-offs; Kosowski’s algorithm, based on weighted Metropolis–Hastings walks due to Nonaka
et al. [28], uses O(log n) space and O(n2 log n) time.

In addition to the applications of our algorithms to the aforementioned problems in computational geometry and image
processing, they can be of practical use in other fields; belowwe outline two possible real-world examples where they may
be useful. Suppose an autonomous surveillance drone is programmed to circle around a group of targets, and move to a
particular location on its route when signaled. The flight pattern of this drone can be modeled by a cactus graph, and when
signaled, the drone will solve the shortest path problem using a constant-work-space algorithm since its available memory
is limited. As a second application, block graphs may be used to model networks of social or business groups where new
members may join only one group but can later create groups of their own. Finding the shortest path in such a network
corresponds to establishing contact between two people through the fewest interpersonal connections; the clique number
corresponds to the largest group in the network, and the chromatic polynomial corresponds to the number of ways to assign
jobs so that there are no duplicating jobs within each group. Since business and social networks can be very large, it may be
necessary to use memory efficient algorithms to solve these problems.

This paper is organized as follows. In thenext section,we recall somebasic definitions and introduce a fewconceptswhich
will be used later on. In Section 3, we present a constant-work-space algorithm for finding the shortest path in block graphs.
In Section 4, we adapt this algorithm to cactus graphs. In Section 5, we propose in-place algorithms for cactus and block
graphs, which perform faster than the corresponding constant-work-space algorithms. In Section 6, we use the subroutines
described in the previous sections to find the clique number, girth, circumference, and chromatic polynomials of cactus
graphs and block graphs using constant work space. We conclude with some final remarks in Section 7.

2. Preliminaries

A constant-work-space algorithm is an algorithm that uses only a constant number ofmemory cells, eachwith sizeO(log n),
where n is the size of the input. In addition, the input is given as a read-only array and may not be modified. An in-place
algorithm also uses a constant number of memory cells, each with size O(log n); its input is a read–write array, the content
of which may be modified or deleted. The output of constant-work-space and in-place algorithms is write-only and does
not count toward the space used. We will assume that all graphs in the present paper are given by adjacency lists, where
the vertices of a graph of order n are labeled with the first n natural numbers; the jth neighbor of vertex i can be accessed in
O(1) time with Adj(i, j).
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