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a b s t r a c t

A linear-time algorithm for determining the triangular hull of a digital object that is
digitized with a uniform triangular-grid scan, is presented in this paper. A triangular
hull consists of a sequence of edges on the underlying triangular grid T consisting of
three sets of parallel grid lines that are inclined at 0°, 60°, and 120° w.r.t. the x-axis. The
proposed algorithm determines the triangular hull of a given object on the basis of certain
geometrical properties of the edge-sequence observed along its boundary. The approach
is purely combinatorial in nature as opposed to other conventional algorithms used for
computing the convex hull such as those based on divide-and-conquer or line-sweep.
The running time of the algorithm is linear on the number of pixels on the perimeter
of the object. Also, by using a more sparse grid, i.e., by increasing the grid unit, the
number of perimeter-pixels, and in turn, the running time of the algorithm can be reduced
proportionately. The algorithm is tested extensively on several test cases and experimental
results and analysis are presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A polygon P is said to be convex if P is non-intersecting, and for any two points p and q on the boundary of P , the
segment pq lies entirely inside P . The convex hull of an object A, denoted by CH(A), is the smallest convex polygon that
contains all the points of A. There exist a number of algorithms in the literature to find the convex hull of a point set or a
polygonal object having arbitrary shape on the real plane. The running time of some of the existing algorithms are O(n3)
(brute force), O(n log n) [6], O(nh) [8], and O(n log h) [10], where, n is the number of points/vertices of A, and h is the number
of vertices of CH(A). Also, there are other algorithms for finding the convex hull, e.g., [2,4,15]. A detailed analytical study of
convex hull algorithmsmay be seen in [1]. However, because of the inherent complexities, these algorithms do not perform
well for sufficiently large digital objects and hence, they are unsuitable for real world applications. For example, in gift
wrapping algorithm, from a point pi on the hull, the next point pi+1 is determined by comparing polar angles of all points
with respect to point pi considering it as the center of polar coordinates. Computing and comparing these polar angles
involve trigonometric operations. Graham scan, on the other hand, uses the sign of 3 × 3 determinants formed by three
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Fig. 1. (a) A digital image and its triangular hulls for (b) g = 4 and (c) g = 8.

consecutive points pi−1, pi, pi+1 to determine whether there is a left-turn, right-turn, or no turn at pi. Computation of this
determinant requires multiplication along with comparison and addition/subtraction. Biswas et al. [3] recently proposed a
combinatorial algorithm to find the orthogonal hull of a digital object (Definition 1) in isothetic grid whose time complexity
depends on the object perimeter instead of the object area. Theywere also able to control the precision and complexity of the
hull by varying the grid spacing. However, there is no algorithm to find convex hull of a digital object in the triangular grid.
Convex hull algorithms are widely used both in theory and application; in fact, convex hull algorithms are fundamental
as many algorithms on computational and digital geometry are based on them. There are many variations of computing
convex hull algorithm. The relative convex hull algorithm is proposed in [11], which is a special subject in computational
geometry (shortest paths), in image analysis (calculation of features), in robotics (shortest path of a robot in a constrained
environment), and so forth. Computation of convex hulls of spheres with a constant number of distinct radii, and convex
hulls of a constant number of disjoint convex polytopes are discussed in [9]. The creation of polyhedral approximations for
certain kinds of digital objects in a three-dimensional space is presented in [14], where objects are represented as sets of
voxels. The proposed algorithm in this paper generates the convex hull of a given object and modifies the hull afterwards
by recursive repetitions. The convex hull of a spherically symmetric sample is discussed in [7], where some new asymptotic
results are presented. Convex hull algorithms in 2D or 3D depend on the coordinates of sample points. An approximation
algorithm named FVDM is proposed in [17], which only utilizes the information of the distance matrix of samples to find
the convex hull. A novel method of convex–concave hull is stated in [13] for support vector machine (SVM) classification.
In [16], a hybrid convex hull algorithm is proposed to detect finger tips directly from a binary image without going through
the edge detection process. The problemaddressed here is the following: given a 2Ddigital object S imposed on a background
triangular gridT (Definition 2) consisting of three sets of parallel grid lines, which are inclined at 0°, 60°, and 120°w.r.t x-axis,
find a minimum area triangular convex polygon (i.e., triangular convex hull) containing the object S. A triangular grid, also
known as isometric grid [5], is obtained by tiling the plane regularly with equilateral triangles. It may be noted here that
hexagonal grid is the dual of the triangular grid and vice versa [5]. The resolution and complexity of the triangular hull of
a given digital object can be controlled by changing the grid spacing, thus enabling it to meet the requirement of a specific
application. It may be noted that the triangular hull depends on the registration of the digital object S with the grid T, i.e., for
the same object with different registration the resulting hull may be different. Fig. 1(a) shows a digital object and Fig. 1(b)
and (c) show triangular hulls for two different grid sizes, g = 4 and g = 8, respectively.

2. Definitions and preliminaries

Definition 1 (Digital Object). A (digital) object is a finite subset of Z2 consisting of one or more k(= 4 or 8)-connected
components [12].

In this work, the object is considered as a single 8-connected component.

Definition 2 (Triangular Grid). A triangular grid (henceforth simply referred as grid) T := (L0, L60, L120) consists of three
sets of parallel grid lines, which are inclined at 0°, 60°, and 120°w.r.t. x-axis.

The grid lines in L0, L60, L120 correspond to three distinct coordinate axes, namely α, β, γ . Three grid lines, one each
from L0, L60, L120, intersect at a (real) grid point. The distance between two consecutive grid points along a grid line is
termed as grid size, g . A line segment of length g connecting two consecutive grid points on a grid line is called grid edge. The
smallest-area triangle formed by three grid edges, one each from L0, L60, L120, is called unit grid triangle (UGT ). A portion
of the triangular grid is shown in Fig. 2. It has six distinct regions called sextants, each of which is well-defined by two
rays starting from (0, 0, 0). For example, Sextant 1 is defined by the region lying between {β = γ = 0, α ≥ 0} and
{α = γ = 0, β ≥ 0}. One of α, β, γ is always 0 in a sextant. For example, γ = 0 in Sextant 1 and Sextant 4. For a given
grid point, p, there are six neighboring UGTs, given by {Ti : i = 0, 1, . . . , 5}. The three coordinates of p are given by the
corresponding moves along a/the shortest path from (0, 0, 0) to p, measured in grid unit. For example, (1, 2, 0) means a
unit move along 0° followed by two unit moves along 60°, starting from (0, 0, 0). The grid point p can have six neighbor grid
points, whose direction codes are given by {d : i = 0, 1, . . . , 5}.
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