
Discrete Applied Mathematics 216 (2017) 261–272

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Characterization and recognition of some opposition and
coalition graph classes
Van Bang Le ∗, Thomas Podelleck
Universität Rostock, Institut für Informatik, Rostock, Germany

a r t i c l e i n f o

Article history:
Received 15 March 2014
Received in revised form 15 May 2015
Accepted 10 June 2015
Available online 29 June 2015

Keywords:
Perfectly orderable graph
One-in-one-out graph
Opposition graph
Coalition graph
Perfect graph

a b s t r a c t

A graph is an opposition graph, respectively, a coalition graph, if it admits an acyclic
orientation which puts the two end-edges of every chordless 4-vertex path in opposition,
respectively, in the same direction. Opposition and coalition graphs have been introduced
and investigated in connection to perfect graphs. Recognizing and characterizing
opposition and coalition graphs are long-standing open problems. This paper gives
characterizations for opposition graphs and coalition graphs on some restricted graph
classes. Implicit in our arguments are polynomial time recognition algorithms for these
graphs. We also give a good characterization for the so-called generalized opposition
graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Chvátal [4] proposed to call a linear order < on the vertex set of an undirected graph G perfect if the greedy coloring
algorithm applied to each induced subgraph H of G gives an optimal coloring of H . Consider the vertices of H sequentially
by following the order < and assign to each vertex v the smallest color not used on any neighbor u of v, u < v. A graph is
perfectly orderable if it admits a perfect order. Chvátal proved that< is a perfect order if and only if there is no chordless path
with four vertices a, b, c, d and three edges ab, bc, cd (written P4 abcd) with a < b and d < c. He also proved that perfectly
orderable graphs are perfect.1 The class of perfectly orderable graphs properly containsmany important, well-known classes
of perfect graphs such as chordal graphs and comparability graphs. Perfectly orderable graphs have been extensively studied
in the literature; see Hoàng’s comprehensive survey [11] for more information.

Recognizing perfectly orderable graphs is NP-complete [15] (see also [10]). Also, no characterization of perfectly
orderable graphs by forbidden induced subgraphs is known. These facts have motivated researchers to study subclasses
of perfectly orderable graphs; see, e.g., [8,11,12] and the literature given there. Observe that a linear order < corresponds to
an acyclic orientation by directing the edge xy from x to y if and only if x < y. Thus, a graph is perfectly orderable if and only
if it admits an acyclic orientation such that the orientation of no chordless path P4 is of type 0 (equivalently, the orientation
of every P4 is of type 1, 2, or 3); see Fig. 1.

One of the natural subclass of perfectly orderable graphs for which the recognition complexity, as well as an induced
subgraph characterization are still unknown is the following (cf. [11,12]).

Definition 1. A graph is a coalition graph if it admits an acyclic orientation such that every induced P4 abcd has the end-
edges ab and cd oriented in the ‘same way’, that is, every oriented P4 is of type 2 or 3. Such an orientation is called a coalition
orientation.
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1 A graph is perfect if the chromatic number and the clique number are equal in every induced subgraph.
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Fig. 1. Four types of oriented P4 .

Equivalently, a graph is a coalition graph if it admits a linear order< on its vertex set such that every induced P4 abcd has
a < b if and only if c < d. In [11], coalition graphs are called one-in-one-out graphs. Examples of coalition graphs include
comparability graphs, hence all bipartite graphs.

A related graph class has been introduced by Olariu in [18]:

Definition 2. A graph is an opposition graph if it admits an acyclic orientation such that every induced P4 abcd has the end-
edges ab and cd oriented ‘in opposition’, that is, every oriented P4 is of type 0 or 1. Such an orientation is called an opposition
orientation.

Equivalently, a graph is an opposition graph if it admits a linear order< on its vertex set such that every P4 abcd has a < b
if and only if d < c. Olariu [18] proved that opposition graphs are perfect. He also conjectures [20] that not all opposition
graphs are perfectly orderable. Examples of opposition graphs include all split graphs. The recognition and characterization
problems for opposition graphs are still open.

Coalition graphs and opposition graphs have been studied in the past from the combinatorial and algorithmic point
of view. The characterization and recognition problems for these graphs have been solved for a few special graph classes
so far. A natural subclass of opposition graphs consists of those admitting an acyclic orientation in which every P4 is
oriented as type 1 (equivalently, every P4 is oriented as type 0). These are called bipolarizable graphs, and have been
characterized by (infinitely many) forbidden induced subgraphs in [9,12], and have been recognized using O(n) adjacency
matrix multiplications and thus in O(n3.376) time in [8], and in O(nm) time in [16]; n is the vertex number and m is the
edge number of the input graph. Another subclass of opposition graphs are the so-called Welsh–Powell opposition graphs;
see [21,14,17] for more information.

In a recent paper [13], bipartite opposition graphs have been characterized by (infinitely many) forbidden induced
subgraphs, and have been recognized in linear time. This paper gives also characterizations for complements of bipartite
graphs that are coalition or opposition graphs. It turns out that co-bipartite coalition graphs and co-bipartite opposition
graphs coincide, and they are exactly the complements of bipartite permutation graphs, hence can be recognized in
linear time. There is also a characterization of co-bipartite coalition/opposition graphs in terms of their bi-matrices. This
characterization is similar to the one of co-bipartite perfectly orderable graphs given by Chvátal in [5], which has a close
connection to a theorem in mathematical programming.

We first address in Section2 the so-called generalized opposition graphs introducedbyChvátal; these graphs are obtained
when the condition ‘acyclic’ in Definition 2 is dropped. This concept turns out to be useful when considering opposition
graphs in certain graph classes. We give a characterization for generalized opposition graphs in terms of an auxiliary graph,
which leads to a polynomial time recognition algorithm.

In Section 3 we extend the results in [13] on bipartite opposition graphs to the larger class of (gem, house)-free graphs.
It turns out that inside this graph class, opposition graphs and generalized opposition graphs coincide, hence (gem, house)-
free opposition graphs can be recognized in polynomial time.

In Section 4 we give a forbidden subgraph characterization for distance-hereditary opposition graphs, a subclass of
(gem, house)-free opposition graphs; this result includes the subgraph characterization for tree opposition graphs found
in [13].

In Section 5 we show that (gem, house, hole)-free coalition graphs can be recognized in polynomial time by modifying
the auxiliary graph for generalized opposition graphs. For the smaller class of distance-hereditary coalition graphs, we give
a faster recognition algorithm by showing that they are indeed comparability graphs.

Definitions and notation. We consider only finite, simple, and undirected graphs. For a graph G, the vertex set is denoted V (G)
and the edge set is denoted E(G). For a vertex u of a graph G, the neighborhood of u in G is denoted NG(u) or simply N(u) if
the context is clear, and the degree of u is deg(u) = |N(u)|. Write N[u] = N(u) ∪ {u}. For a set U of vertices of a graph G,
write N(U) =


u∈U N(u) \ U and N[U] = N(U) ∪ U . The subgraph of G induced by U is denoted G[U]. If u is a vertex of a

graph G, then G − u is G[V (G) \ {u}].
For ℓ ≥ 1, let Pℓ denote a chordless pathwith ℓ vertices and ℓ−1 edges, and for ℓ ≥ 3, let Cℓ denote a chordless cyclewith

ℓ vertices and ℓ edges. We write Pℓ u1u2 . . . uℓ and Cℓ u1u2 . . . uℓu1, meaning the chordless path with vertices u1, u2, . . . , uℓ

and edges uiui+1, 1 ≤ i < ℓ, respectively, the chordless cycle with vertices u1, u2, . . . , uℓ and edges uiui+1, 1 ≤ i < ℓ, and
uℓu1. The edges u1u2 and uℓ−1uℓ of the path Pℓ (ℓ ≥ 3) are the end-edges and the other edges are the mid-edges of the path,
while the vertices u1 and uℓ are the end-vertices and the other vertices are themid-vertices of the path. In this paper, all paths
Pℓ and all cycles Cℓ will always be induced.
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