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a b s t r a c t

V -order is a global order on strings related to Unique Maximal Factorization Families
(UMFFs), themselves generalizations of Lyndonwords. V -order has recently been proposed
as an alternative to lexicographic order in the computation of suffix arrays and in the
suffix-sorting induced by the Burrows–Wheeler transform. Efficient V -ordering of strings
thus becomes a matter of considerable interest. In this paper we discover several new
combinatorial properties of V -order, then explore the computational consequences; in
particular, a fast, simple on-line V -order comparison algorithm that requires no auxiliary
data structures.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Our interest in V -order [6] arises out of a generalization of Lyndon words called Unique Maximal Factorization Families
(UMFFs) [7] whose combinatorial properties were explored in [8]. More recently, several papers [9,10,1,2] have investigated
the combinatorial properties of V -order itself, with particular emphasis on algorithms for V -order string comparison.
This latter topic becomes interesting because of recent work [11] showing that V -order can be used as an alternative to
lexicographic order in the computation of suffix arrays [13] and in the suffix-sorting induced by the Burrows–Wheeler
transform [14].

In this paper we first prove a collection of combinatorial properties of V -order making clear that V -order comparison of
strings can be done in a manner analogous to lexicographic comparison, by simply traversing the string from left to right.
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We then go on to propose a very simple on-line V -order comparison algorithm that requires no additional data structures
and that moreover is much faster than any of its predecessors.

In Section 2 we introduce basic concepts, including V -order and V -form, and state two lemmas important for our
development. Section 3 provides new combinatorial results that constitute the theoretical background for our new V -order
comparison algorithm. The algorithm itself is specified in Section 4, and the results of computer experiments are discussed
in Section 5. Most of the combinatorial results in this paper appeared first in [3].

2. Preliminaries

Consider a finite ordered alphabet Σ; that is, a set of letters of cardinality σ = |Σ |. A string is a sequence of zero or more
letters over Σ . A string x of length |x| = n is represented as an array x[1..n], where x[i] ∈ Σ for 1 ≤ i ≤ n. The set of
all nonempty strings over Σ is denoted by Σ+. The empty string of length zero is denoted by ε, with Σ∗

= Σ+
∪ ε, often

written x[i..j] with j < i. A string w is a substring, or factor, of x if x = uwv with u, v ∈ Σ∗; then u is a prefix and v a suffix
of x. A subsequence of y is a string x defined by xk = ynk , where n1 < n2 < · · · is an increasing sequence of indices. A string
x is a proper subsequence of y if x is a subsequence of y and x ≠ y. A string y is a rotation of x[1..n], written y = Ri(x), if
y = x[i..n]x[1..i − 1] for some 1 ≤ i < n (for i = 1, y = x). Given two strings x and y with |x| < |y|, x is lexicographically
less than y (x < y) if and only if
• x is a prefix of y; or
• x and y have a common prefix u of length ℓ = |u| and x[ℓ + 1] < y[ℓ + 1].

Then x[1..n] is a Lyndon word if and only if x < Ri(x) for every 1 < i < n. For further stringological definitions, theory and
algorithmics see [5].

Theorem 1 ([4]). Any wordw can be written uniquely as a non-increasing sequencew = u1u2 . . . uk of Lyndon words.

This famous theorem was followed a quarter-century later by an equally famous algorithm [12] that computed the
decomposition u1 ≥ u2 ≥ · · · ≥ uk in time O(|w|). With this background, we now define a non-lexicographic global
order, V -order, and explore its properties.

Let x = x1x2 . . . xn be a string over Σ . Define h ∈ {1, . . . , n} by h = 1 if x1 ≤ x2 ≤ · · · ≤ xn; otherwise, by the unique
value such that xh−1 > xh ≤ xh+1 ≤ xh+2 ≤ · · · ≤ xn. Let x∗

= x1x2 . . . xh−1xh+1 . . . xn, where the star ∗ indicates deletion
of the letter xh. Write xs∗ for (. . . (x∗)∗ . . .)∗ with s ≥ 0 stars. Let g = max{x1, x2, . . . , xn}, and let k be the number of
occurrences of g in x. Then the sequence x, x∗, x2∗, . . . ends with gk, . . . , g2, g1, g0

= ε. In the star tree each string x over
Σ labels a vertex, and there is a directed edge from x to x∗, with ε as root.

Definition 1. We define V-order ≺ between distinct strings x, y. First x ≺ y if x is in the path y, y∗, y2∗, . . . , ε. If x, y are
not in a path, there exist smallest s, t such that x(s+1)∗

= y(t+1)∗. Put s = xs∗ and t = yt∗; then s ≠ t but |s| = |t| = m say.
Let j ∈ 1..m be the greatest integer such that s[j] ≠ t[j]. If s[j] < t[j] in Σ then x ≺ y.

Example 1. Using the natural ordering of integers, if x = 32 415, then x∗
= 3245, x2∗ = 345, x3∗ = 45 and so 45 ≺ 32 415.

Definition 2 ([6,7,9,10]). The V -form of a string x is defined as

Vk(x) = x = x0gx1g . . . xk−1gxk
for strings xi, i = 0, 1, . . . , k, where g is the largest letter in x—thus we suppose that g occurs exactly k times. For clarity,
when more than one string is involved, we use the notation g = Lx, k = Cx.

Lemma 1 ([6,7,9,10]). Suppose we are given distinct strings x and y with corresponding V-forms as follows:

x = x0Lxx1Lxx2 · · · xj−1Lxxj, (1)

y = y0Lyy1Lyy2 · · · yk−1Lyyk, (2)

where j = Cx, k = Cy . Then x ≺ y if, and only if, one of the following conditions holds:
(C1) Lx < Ly
(C2) Lx = Ly and Cx < Cy
(C3) Lx = Ly , Cx = Cy and xh ≺ yh, where h ∈ {0 . . .max(j, k)} is the least integer such that xh ≠ yh.

Lemma 2 ([9,10]). For given strings v and x, if v is a proper subsequence of x, then v ≺ x.

Example 2. We compare the two orderings for a set of English words over the ordered Roman alphabet:

Lexorder (<): catastrophe < sop < strop < strophe < top.
The words are scanned from left to right, seeking the first difference.

V -order (≺): sop ≺ top ≺ strop ≺ strophe ≺ catastrophe.
The first V -order comparison is determined by Lemma 1(C1), the following three by the useful Lemma 2.
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