The set chromatic number of random graphs

Andrzej Dudek ${ }^{\text {a }}$, Dieter Mitsche ${ }^{\text {b }}$, Paweł Prałat ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematics, Western Michigan University, Kalamazoo, MI, USA
${ }^{\text {b }}$ Université de Nice Sophia-Antipolis, Laboratoire J-A Dieudonné, Parc Valrose, 06108 Nice cedex 02, France
${ }^{\text {c }}$ Department of Mathematics, Ryerson University, Toronto, ON, Canada

ARTICLE INFO

Article history:

Received 10 July 2015
Received in revised form 6 June 2016
Accepted 7 July 2016
Available online xxxx

Keywords:

Random graphs
Set chromatic number

Abstract

In this paper we study the set chromatic number of a random graph $\mathcal{g}(n, p)$ for a wide range of $p=p(n)$. We show that the set chromatic number, as a function of p, forms an intriguing zigzag shape. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

A proper colouring of a graph is a labelling of its vertices with colours such that no two vertices sharing the same edge have the same colour. A colouring using at most k colours is called a proper k-colouring. The smallest number of colours needed to colour a graph G is called its chromatic number, and it is denoted by $\chi(G)$.

In this paper we are concerned with another notion of colouring, first introduced by Chartrand, Okamoto, Rasmussen and Zhang [1]. For a given (not necessarily proper) k-colouring $c: V \rightarrow[k]$ of the vertex set of $G=(V, E)$, let

$$
C(v)=\{c(u): u v \in E\}
$$

be the neighbourhood colour set of a vertex v. (In this paper, $[k]:=\{1,2, \ldots, k\}$.) The colouring c is a set colouring if $C(u) \neq C(v)$ for every pair of adjacent vertices in G. The minimum number of colours, k, required for such a colouring is the set chromatic number $\chi_{s}(G)$ of G. One can show that

$$
\begin{equation*}
\log _{2} \chi(G)+1 \leq \chi_{s}(G) \leq \chi(G) \tag{1}
\end{equation*}
$$

Indeed, the upper bound is trivial, since any proper colouring c is also a set colouring: for any edge $u v, N(u)$, the neighbourhood of u, contains $c(v)$ whereas $N(v)$ does not. On the other hand, suppose that there is a set colouring using at most k colours. Since there are at most 2^{k} possible neighbourhood colour sets, one can assign a unique colour to each set obtaining a proper colouring using at most 2^{k} colours. We get that $\chi(G) \leq 2^{\chi_{s}(G)}$, or equivalently, $\chi_{s}(G) \geq \log _{2} \chi(G)$. With slightly more work, one can improve this lower bound by 1 (see [8]), which is tight (see [2]).

Let us recall a classic model of random graphs that we study in this paper. The binomial random graph $\mathcal{g}(n, p)$ is the random graph G with vertex set $[n]$ in which every pair $\{i, j\} \in\binom{[n]}{2}$ appears independently as an edge in G with probability p. Note that $p=p(n)$ may (and usually does) tend to zero as n tends to infinity.

[^0]

Fig. 1. The function $r=r(p)$ for $p \in(0,1)$ and $p \in(0,1 / 2]$, respectively.
All asymptotics throughout are as $n \rightarrow \infty$ (we emphasize that the notations $o(\cdot)$ and $O(\cdot)$ refer to functions of n, not necessarily positive, whose growth is bounded). We also use the notations $f \ll g$ for $f=o(g)$ and $f \gg g$ for $g=o(f)$. We say that an event in a probability space holds asymptotically almost surely (or a.a.s.) if the probability that it holds tends to 1 as n goes to infinity. Since we aim for results that hold a.a.s., we will always assume that n is large enough. We often write $g(n, p)$ when we mean a graph drawn from the distribution $g(n, p)$. For simplicity, we will write $f(n) \sim g(n)$ if $f(n) / g(n) \rightarrow 1$ as $n \rightarrow \infty$ (that is, when $f(n)=(1+o(1)) g(n))$. Finally, we use \lg to denote logarithms with base 2 and log to denote natural logarithms.

Before we state the main result of this paper, we need a few definitions that we will keep using throughout the whole paper. For a given $p=p(n)$ satisfying

$$
p \geq \frac{4}{\log 2} \cdot \frac{(\log n)(\log \log n)}{n} \text { and } p \leq 1-\varepsilon
$$

for some $\varepsilon>0$, let

$$
s=s(p)=\min \left\{\left[(1-p)^{\ell}\right]^{2}+\left[1-(1-p)^{\ell}\right]^{2}: \ell \in \mathbb{N}\right\},
$$

and let ℓ_{0} be a value of ℓ that achieves the minimum (ℓ_{0} can be assigned arbitrarily if there are at least two such values). We will show in Section 3 that

$$
\begin{equation*}
\ell_{0} \in\left\{\left\lfloor\frac{\log (1 / 2)}{\log (1-p)}\right\rfloor,\left\lceil\frac{\log (1 / 2)}{\log (1-p)}\right\rceil\right\} \tag{2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{1}{2} \leq s(p) \leq \frac{1+p^{2}}{2} \tag{3}
\end{equation*}
$$

If p is a constant, then $r=r(p)$ is defined such that $n^{2} s^{r \lg n}=1$, that is,

$$
\begin{equation*}
r=r(p)=\frac{2}{\lg (1 / s)} \tag{4}
\end{equation*}
$$

Observe that r tends to infinity as $p \rightarrow 1$ and undergoes a "zigzag" behaviour as a function of p (see Fig. 1). The reason for such a behaviour is, of course, that the function s is not monotone (see Fig. 2). Furthermore, observe that for each $p=1-(1 / 2)^{1 / k}$, where k is a positive integer, $\ell_{0}=k, s=1 / 2$, and $r=2$.

Now we state the main result of the paper.
Theorem 1.1. Suppose that $p=p(n)$ is such that

$$
p \gg(\log n)^{2}(\log \log n)^{2} / n \quad \text { and } \quad p \leq 1-\varepsilon
$$

for some $\varepsilon \in(0,1)$. Let $G \in \mathcal{G}(n, p)$. Then, the following holds a.a.s.
(i) If p is a constant, then

$$
\chi_{s}(G) \sim r \lg n
$$

https://daneshyari.com/en/article/4949914

Download Persian Version:

https://daneshyari.com/article/4949914

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: andrzej.dudek@wmich.edu (A. Dudek), dmitsche@unice.fr (D. Mitsche), pralat@ryerson.ca (P. Prałat).
 http://dx.doi.org/10.1016/j.dam.2016.07.011
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

