Maximum atom-bond connectivity index with given graph parameters ${ }^{\star}$

Xiu-Mei Zhang ${ }^{\text {a }}$, Yu Yang ${ }^{\text {b }}$, Hua Wang ${ }^{\text {c }}$, Xiao-Dong Zhang ${ }^{\text {d,* }}$
${ }^{a}$ Department of Mathematics, Shanghai Sanda University, 2727 Jinhai road, Shanghai, 201209, PR China
${ }^{\text {b }}$ School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, PR China
${ }^{\text {c }}$ Department of Mathematical Sciences, Georgia Southern University, Stateboro, GA 30460, United States
${ }^{\text {d }}$ School of Mathematical Sciences, MOE-LSC and SHL-MAC, Shanghai Jiao Tong University, 800 Dongchuan road, Shanghai, 200240, PR China

ARTICLE INFO

Article history:

Received 23 January 2016
Received in revised form 5 May 2016
Accepted 16 June 2016
Available online xxxx

Keywords:

Atom-bond connectivity index
Independence number
Pendent vertices
Chromatic number
Edge-connectivity

Abstract

The atom-bond connectivity (ABC) index is a degree-based topological index. It was introduced due to its applications in modeling the properties of certain molecular structures and has been since extensively studied. In this note, we examine the influence on the extremal values of the ABC index by various graph parameters. More specifically, we consider the maximum $A B C$ index of connected graphs of given order, with fixed independence number, number of pendent vertices, chromatic number and edgeconnectivity respectively. We provide characterizations of extremal structures as well as some conjectures. Numerical analysis of the extremal values is also presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. For $u \in V(G)$, the degree of u, denoted by $d(u)$, is the number of neighbors of u in G. An independent set is a set of vertices of which no pair is adjacent. The independence number $\beta(G)$ of a graph G is the size of a largest independent set of G. The chromatic number $\chi(G)$ of a graph G is the least number of colors assigned to $V(G)$ such that no adjacent elements receive the same color. The edge connectivity $k(G)$ of a graph G is the minimum number of edges needed to disconnect G.

The atom bond connectivity (ABC) index of G is defined [8] as

$$
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d(u)+d(v)-2}{d(u) d(v)}} .
$$

The $A B C$ index is one of many so called topological indices that are extensively used in theoretical chemistry to correlate physico-chemical properties with the molecular structures of chemical compounds. It appears that the ABC index shows

[^0]a strong correlation with heat of formation of alkanes [8]. Some topological approaches were also developed based on the ABC index to explain the differences in the energy of linear and branched alkanes [7].

In the study of topological indices in general, it is often of interest to consider the extremal values of a certain index among graphs under various constrains. Along this line, the extremal values of the ABC index have been extensively explored [2-6,9-16].

We intend to expand this study by exploring the maximum ABC index of connected graphs of given order, with fixed independence number, number of pendent vertices, edge-connectivity, and chromatic number respectively. First we will introduce some simple but useful facts.

Theorem 1.1 ([1]). Let G be a graph with n vertices, if $x, y \in V(G)$ and $x y \in E(\bar{G})$, then

$$
A B C(G) \leqslant A B C(G+x y)
$$

with equality if and only if x and y are both isolated vertices. Furthermore,

$$
A B C(G) \leqslant A B C\left(K_{n}\right)
$$

with equality if and only if $G=K_{n}$.
To simplify notations, we define the following functions:

- $f(x, y)=\sqrt{\frac{x+y-2}{x y}}$;
- $g(x, y)=f(x+1, y)-f(x, y)$;
- $F(x)=x f(x+m, 1)$,
for $x, y, m \geq 1$.
Lemma 1.2 ([14]). For the function $f(x, y)$ we have:
- $f(x, 1)$ is strictly increasing with respect to x;
- $f(x, 2)=\frac{\sqrt{2}}{2}$;
- $f(x, y)$ is strictly decreasing with respect to x for any fixed $y \geq 3$.

Lemma 1.3 ([4,14]). The function $g(x, y)$ is strictly decreasing with respect to x if $y=1$, and increasing with respect to x if $y \geq 2$.

Lemma 1.4. The function $F(x)$ is convex and strictly increasing for $x \geq 1$. As a result of the convexity we have

$$
F\left(x_{1}+1\right)-F\left(x_{1}\right)>F\left(x_{2}\right)-F\left(x_{2}-1\right)
$$

if $x_{1} \geq x_{2} \geq 1$.
Proof. Note that $F(x)=x f(x+m, 1)=x \sqrt{\frac{x+m-1}{x+m}}$, then we have

$$
\begin{aligned}
F^{\prime}(x) & =\sqrt{\frac{x+m-1}{x+m}}+\frac{x}{2} \cdot \sqrt{\frac{x+m}{x+m-1}} \cdot \frac{1}{(x+m)^{2}} \\
& =\sqrt{\frac{x+m-1}{x+m}}\left(1+\frac{1}{2} \cdot \frac{x}{(x+m-1)(x+m)}\right)>0
\end{aligned}
$$

and

$$
\begin{aligned}
F^{\prime \prime}(x)= & \frac{1}{2} \cdot \sqrt{\frac{x+m}{x+m-1}} \cdot \frac{1}{(x+m)^{2}}\left(1+\frac{1}{2}\left(\frac{m}{x+m}-\frac{m-1}{x+m-1}\right)\right) \\
& +\sqrt{\frac{x+m-1}{x+m}}\left(-\frac{m}{2(x+m)^{2}}+\frac{m-1}{2(x+m-1)^{2}}\right) \\
= & \sqrt{\frac{x+m-1}{x+m}}\left(\frac{1+\frac{1}{2}\left(\frac{m}{x+m}-\frac{m-1}{x+m-1}\right)}{2(x+m-1)(x+m)}-\frac{m}{2(x+m)^{2}}+\frac{m-1}{2(x+m-1)^{2}}\right) \\
= & \frac{(4 m-1) x+4 m(m-1)}{4(x+m)^{\frac{5}{2}}(x+m-1)^{\frac{3}{2}}}>0
\end{aligned}
$$

when $x, m \geq 1$.
Lemma 1.5. Let $G(a, b)=f(a, b-1)-f(a-1, b)$ for some $a>b>0$. Then $G(a, b)>0$.

https://daneshyari.com/en/article/4949929

Download Persian Version:
https://daneshyari.com/article/4949929

Daneshyari.com

[^0]: ${ }^{t}$ Th This work is supported by the National Natural Science Foundation of China (Nos. 11531001 and 11271256), the Joint NSFC-ISF Research Program (jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation (No. 11561141001)), Innovation Program of Shanghai Municipal Education Commission (No. 14ZZ016, No. 15ZZ108), Shanghai Natural Science Foundation of China (No.16ZR1422400), and Simons Foundation (No. 245307).

 * Corresponding author.

 E-mail address: xiaodong@sjtu.edu.cn (X.-D. Zhang).
 http://dx.doi.org/10.1016/j.dam.2016.06.021
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

