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(m® —4m + 18)/4, ifmiseven
with equality if and only if G is the graph obtained from the cycle C,_, by duplicating a

single vertex.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the readers to [2] for terminology
and notations. Let C, denote the cycle on n vertices. Let G be a connected graph with vertex set V and edge set E. For
u,v € V,d(u, v) denotes the distance between u and v. The Wiener index of G is defined as

WG = > du,v).

{u,vjcv

This topological index has been extensively studied in the mathematical literature; see, e.g., [8,10]. Let e = uv be an edge of
G, and define three sets as follows:

Ny(e) ={w eV :du, w) < d(v, w)},
Ny(e) ={w eV :d(v, w) < d(u, w)},
No(e) ={w € V :d(u, w) =d(v, w)}.
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Thus, {N,(e), N,(e), No(e)} is a partition of the vertices of G with respect to e. The number of vertices of N, (e), N,(e) and
No(e) are denoted by n,(e), n,(e) and ng(e), respectively. A long time known property of the Wiener index is the formula
[9,18]:

WG) = Y nue)n,(e).
e=uvekE

which is applicable for trees. Using the above formula, Gutman [6] introduced a graph invariant named the Szeged index as
an extension of the Wiener index and defined it by

S2(@) = ) m(e)n,(e).
e=uvek

Randi¢ [15] observed that the Szeged index does not take into account the contributions of the vertices at equal distances
from the endpoints of an edge, and so he conceived a modified version of the Szeged index which is named the revised Szeged
index. The revised Szeged index of a connected graph G is defined as

o no(e) no(e)
Sz (G) = Z <nu(e)+ 2 ><nv(e)—|— > )

e=uvek

Some properties and applications of these topological indices have been reported in [1,4,12-14,16,19].
Given an edge e = uv € E, the distance between the edge e and the vertex x, denoted by d(e, x), is defined as

d(e, x) = min{d(u, x), d(v, x)}.

Similarly, the sets My (e), M, (e) and M, (e) are defined to be the set of edges equidistant from u and v, the set of edges whose
distance to vertex u is smaller than the distance to vertex v and the set of edges closer to v than u, respectively. The number
of edges of M, (e), M, (e) and My(e) are denoted by m,(e), m,(e) and mg(e), respectively. Then, The edge Szeged index [7],
and edge revised Szeged index [5] of G are defined as follows:

S2.(G) = Y my(eym,(e),

e=uveE

@ =Y (mu(e) + m"z(e)) (m,,(e) + mOT(@) .

e=uveE

Results on edge Szeged index can be found in [3,11,17]. In [5], they determined the n-vertex unicyclic graphs with the
largest and the smallest revised edge Szeged indices. In this paper, we give an upper bound of the edge revised Szeged index
for a connected bicyclic graphs, and also characterize those graphs that achieve the upper bound.

Theorem 1.1. Let G be a connected bicyclic graph of size m > 5. Then

(m® — 4m + 16)/4, if misodd,

5z2,(G) = {(m3 — 4m + 18)/4, if miseven

with equality if and only if G is the graph obtained from the cycle C,,_, by duplicating a single vertex.

2. Main results
For convenience, let B, be the graph obtained from the cycle C;_, by duplicating a single vertex (see Fig. 1), where m is
the size of By,. It is easy to check that

(m® —4m +16)/4, ifmisodd,

* —
5z, (Bm) = {(m3 —4m + 18)/4, if mis even.

So, we are left to show that for any connected bicyclic graph G, of size m, other than B,,;, Sz*(G,;,) < Sz*(Bp,). Using the
fact that my(e) + m,(e) + my(e) = m, we have

« _ mo(e) mo(e)
S5 Gm) = Y (mu<e>+ ) )(mv(e)+ S )

e=uvekE
-y m+ my(e) —my(e)\ (m— my(e) + my(e)
a e=uvekE 2 2
-y m* — (my(e) —m,(e))

4

e=uveE
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