Existentially closed graphs via permutation polynomials over finite fields

Nguyen Minh Hai ${ }^{\text {a }}$, Tran Dang Phuc ${ }^{\text {a }}$, Le Anh Vinh ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Faculty of Mathematics, Mechanics and Informatics, Hanoi University of Science, Vietnam National University, Hanoi, Viet Nam
${ }^{\text {b }}$ University of Education, Vietnam National University, Hanoi, Viet Nam

A R T I C L E I N F O

Article history:

Received 28 November 2014
Received in revised form 17 June 2015
Accepted 18 May 2016
Available online 25 July 2016

Keywords:

Existentially closed graphs
Permutation polynomial
Distance graphs

Abstract

For a positive integer n, a graph is n-existentially closed or n-e.c. if we can extend all n-subsets of vertices in all possible ways. It is known that almost all finite graphs are n-e.c. Despite this result, until recently, only few explicit examples of n-e.c. graphs are known for $n>2$. In this paper, we construct explicitly a 4 -e.c. graph via a linear map over finite fields. We also study the colored version of existentially closed graphs and construct explicitly many ($3, t$)-e.c. graphs via permutation polynomials and multiplicative groups over finite fields.

© 2016 Published by Elsevier B.V.

1. Introduction

For a positive integer n, a graph is n-existentially closed or n-e.c. if we can extend all n-subsets of vertices in all possible ways. Precisely, for every pair of subsets A, B of vertex set V of the graph such that $A \cap B=\emptyset$ and $|A|+|B|=n$, there is a vertex z not in $A \cup B$ that joined to each vertex of A and no vertex of B. From the results of Erdős and Rényi [4], almost all finite graphs are n-e.c. Despite this result, until recently, only few explicit examples of n-e.c. graphs are known for $n>2$. See [2] for a comprehensive survey on the constructions of n-e.c. graphs.

In [13], the third listed author studied a multicolor version of this adjacency property. Let n, t be positive integers. A t-edge-colored graph G is (n, t)-e.c. or (n, t)-existentially closed if for any t disjoint sets of vertices A_{1}, \ldots, A_{t} with $\left|A_{1}\right|+\cdots+\left|A_{t}\right|=n$, there is a vertex x not in $A_{1} \cup \cdots \cup A_{t}$ such that all edges from this vertex to the set A_{i} are colored by the i th color. Since the complement of a graph can be viewed as a color class, the usual definition of n-e.c. graphs is the special case of $t=2$.

For a positive integer N, the probability space $G_{t}\left(N, \frac{1}{t}\right)$ consists of all t-colorings of the complete graph of order N such that each edge is colored independently by any color with the probability $\frac{1}{t}$. The third listed author showed [13, Theorem 1.1] that almost all graphs in $G_{t}\left(N, \frac{1}{t}\right)$ have the property (n, t)-e.c. as $N \rightarrow \infty$. The proof of this theorem is similar to the proof that almost all finite graphs have n-e.c. property (see, for example, [4]). Although this result implies that there are many (n, t)-e.c. graphs, it is nontrivial to construct such graphs. The third listed author [13, theorem 1.2] constructed explicitly many graphs satisfying this condition. Let q be an odd prime power and \mathbb{F}_{q} be the finite field with q elements. Let q be a prime power such that $t \mid(q-1)$ and v be a generator of the multiplicative group of the field \mathbb{F}_{q}. We identify the color set with the set $\{0, \ldots, t-1\}$. The graph $P_{q, t}$ is a graph with vertex set \mathbb{F}_{q}, the edge between two distinct vertices being colored by the i th color if their sum is of the form ν^{j} where $j \equiv i \bmod t$. One can show that $P_{q, t}$ is an (n, t)-e.c. graph when

[^0]q is large enough. More precise, if q is a prime power such that
\[

$$
\begin{equation*}
q>3^{(t-1) n} q^{1 / 2}+n 2^{(t-1) n} \tag{1.1}
\end{equation*}
$$

\]

then $P_{q, t}$ has the (n, t)-e.c. property. (Note that, from the probabilistic argument, the upper bound for the smallest order of an (n, t)-e.c. is better than the bound in (1.1). The probabilistic bound, however, is not explicit.)

Note that the main motivation of that work is to construct new classes of n-e.c. graphs. From any (n, t)-e.c. graph, we can obtain an n-e.c. graph by dividing the color set into two sets. For a positive integer N and $0<\rho<1$, the probability space $G(N, \rho)$ consists of graphs with vertex set of size N so that two distinct vertices are joined independently with probability ρ. It is known that almost all graphs in $G(N, \rho)$ have the n-e.c. graphs. The above construction supports this statement by constructing explicitly n-e.c. graphs with edge density p for any $0<\rho<1$.

For any positive integers n and t, let $f(n, t)$ be the order of the smallest (n, t)-e.c. graph. It follows from (1.1) that

$$
f(n, t) \leq 9^{(t-1) n}+n 2^{(t-1) n} .
$$

In particular, if $n=3$ then $f(3, t)=O\left(9^{3 t}\right)$, which is of exponential order. We recall that the expressions $A \ll B$ and $A=O(B)$ are each equivalent to the statement that $|A| \leq c B$ for some constant $c>0$. In [15], the second listed author gave new explicit constructions of $(3, t)$-graphs of polynomial order. Let p be a prime such that $t \mid(p-1), \mathbb{F}_{p}$ be the finite field of p elements, and v be a generator of the multiplicative group of the field. We identify the color set with the set $\{0, \ldots, t-1\}$. For any $d \geq 2$, the graph $Q_{p^{d}, t}$ is the complete graph with the vertex set \mathbb{F}_{p}^{d}, the edge between two distinct vertices $\boldsymbol{x}, \boldsymbol{y}$ being colored by the i th color if their distance

$$
\|\boldsymbol{x}-\boldsymbol{y}\|=\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{d}-y_{d}\right)^{2}
$$

is of the form ν^{j} where $j \equiv i \bmod t$. The third listed author [15, Theorem 1.1] showed that $Q_{p^{d}, t}$ is an (3,t)-e.c. graph when $p \geq t^{6}$ and $d \geq 5$. As an immediate corollary, $f(3, t)=O\left(t^{30}\right)$, which is of polynomial order.

1.1. Permutation polynomials

The main purpose of this paper is to give other explicit constructions of $(3, t)$-graphs via permutation polynomials with two advantages over previous known results. First, we can relax the condition $t \mid(p-1)$. Second, we can construct explicitly $(3, t)$-e.c. graphs with arbitrarily color density. Let p be a prime and \mathbb{F}_{p} be the finite field of p elements. Suppose that $f(x)$ is a polynomial over \mathbb{F}_{p} of degree smaller than p. A basic question in the theory of finite fields is to estimate the size V_{f} of the value set $\left\{f(a) \mid a \in \mathbb{F}_{q}\right\}$. Because a polynomial $f(x)$ cannot assume a given value of more than $\operatorname{deg}(f)$ times over a field, one has the trivial bound

$$
\begin{equation*}
\left\lfloor\frac{p-1}{\operatorname{deg}(f)}\right\rfloor+1 \leq V_{f} \leq p \tag{1.2}
\end{equation*}
$$

If the lower bound in (1.2) is attained, then $f(x)$ is called a minimal value set polynomial. The classification of minimal value set polynomials is the subject of several papers; see $[3,5,6,10]$. The results in these papers assume that p is large compared to the degree of $f(x)$.

If the upper bound in (1.2) is attained, then $f(x)$ is called a permutation polynomial. The classification of permutation polynomials has received considerable attention. See the book of Lidl and Niederreiter [9] and the survey article by Mullen [11]. We identify \mathbb{F}_{p} with the set $\{0,1, \ldots, p-1\}$. Let $\mathcal{A}=A_{1} \cup \ldots \cup A_{t}$ be a partition of \mathbb{F}_{p} such that each A_{i} is a block of consecutive numbers in \mathbb{F}_{p}, that is for any $1 \leq i \leq t$, there exist t_{i}, s_{i} such that $A_{i}=\left\{t_{i}+1, \ldots, t_{i}+s_{i}\right\}$. Let $f \in \mathbb{F}_{p}[x]$ be a permutation polynomial of degree at least 2 . We also need to assume that p is large compared to the degree of $f(x)$. For any $1 \leq i \leq t$, set $V_{i}=\left\{f(a): a \in A_{i}\right\}$. For any $d \geq 2$, the graph $G_{f, \mathscr{A}}^{d}$ is the complete graph with the vertex set \mathbb{F}_{p}^{d}; the edge between two distinct vertices $\boldsymbol{x}, \boldsymbol{y}$ being colored by the i th color if their distance $\|\boldsymbol{x}-\boldsymbol{y}\| \in V_{i}$. We claim that $G_{f, A}^{d}$ is an (3,t)-e.c. graph when $d \geq 5$ and $\left|A_{i}\right| \gg \operatorname{deg}(f) p^{5 / 6} \log p$ for all $1 \leq i \leq t$.

Theorem 1.1. Let f be a nonlinear permutation polynomial over \mathbb{F}_{p} and let $\mathcal{A}=A_{1} \cup \cdots \cup A_{t}$ be a partition of \mathbb{F}_{p} such that each A_{i} is a block of consecutive numbers of cardinality $\left|A_{i}\right| \gg \operatorname{deg}(f) p^{5 / 6} \log p$. For any $d \geq 5$, the graph $G_{f, \mathscr{A}}^{d}$ has ($3, t$)-e.c. property.

Note that these graphs are just Cayley graphs of \mathbb{F}_{p}^{d}. To construct non-Cayley ($3, t$)-e.c. graphs, we need to adjust the definition of $G_{f, \mathcal{A}}^{d}$ slightly using the following notion of mixed distance between two points $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{p}^{d}$:

$$
\|\boldsymbol{x}-\boldsymbol{y}\|_{m}=2 x_{1} y_{1}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{d}-y_{d}\right)^{2} .
$$

Theorem 1.2. Let f be a nonlinear permutation polynomial over \mathbb{F}_{p} and let $\mathcal{A}=A_{1} \cup \cdots \cup A_{t}$ be a partition of \mathbb{F}_{p} such that each A_{i} is a block of consecutive numbers of cardinality $\left|A_{i}\right| \gg \operatorname{deg}(f) p^{5 / 6} \log p$. For any $d \geq 6$, the graph $H_{f, \mathcal{A}}^{d}$ is the complete graph with the vertex set \mathbb{F}_{p}^{d}; the edge between two distinct vertices $\boldsymbol{x}, \boldsymbol{y}$ being colored by the ith color if their mixed distance

$$
\|\boldsymbol{x}-\boldsymbol{y}\|_{m} \in\left\{f(a): a \in A_{i}\right\}
$$

Then $H_{f, \mathcal{A}}^{d}$ is a non-Cayley $(3, t)$-e.c. graphs.
The proof of Theorem 1.2 is exactly the same as the proof of Theorem 1.1 and is left to the interested reader.

https://daneshyari.com/en/article/4949944

Download Persian Version:

https://daneshyari.com/article/4949944

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nguyenminhhai06@gmail.com (N.M. Hai), trandangphuc234@gmail.com (T.D. Phuc), vinhla@vnu.edu.vn (L.A. Vinh).

