Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Existentially closed graphs via permutation polynomials over finite fields

Nguyen Minh Hai^a, Tran Dang Phuc^a, Le Anh Vinh^{b,*}

^a Faculty of Mathematics, Mechanics and Informatics, Hanoi University of Science, Vietnam National University, Hanoi, Viet Nam

ARTICLE INFO

Article history: Received 28 November 2014 Received in revised form 17 June 2015 Accepted 18 May 2016 Available online 25 July 2016

Keywords. Existentially closed graphs Permutation polynomial Distance graphs

1. Introduction

For a positive integer n, a graph is n-existentially closed or n-e.c. if we can extend all n-subsets of vertices in all possible ways. Precisely, for every pair of subsets A, B of vertex set V of the graph such that $A \cap B = \emptyset$ and |A| + |B| = n, there is a vertex z not in $A \cup B$ that joined to each vertex of A and no vertex of B. From the results of Erdős and Rényi [4], almost all finite graphs are *n*-e.c. Despite this result, until recently, only few explicit examples of *n*-e.c. graphs are known for n > 2. See [2] for a comprehensive survey on the constructions of *n*-e.c. graphs.

In [13], the third listed author studied a multicolor version of this adjacency property. Let n, t be positive integers. A t-edge-colored graph G is (n, t)-e.c. or (n, t)-existentially closed if for any t disjoint sets of vertices A_1, \ldots, A_t with $|A_1| + \cdots + |A_t| = n$, there is a vertex x not in $A_1 \cup \cdots \cup A_t$ such that all edges from this vertex to the set A_i are colored by the *i*th color. Since the complement of a graph can be viewed as a color class, the usual definition of *n*-e.c. graphs is the special case of t = 2.

For a positive integer N, the probability space $G_t(N, \frac{1}{t})$ consists of all *t*-colorings of the complete graph of order N such that each edge is colored independently by any color with the probability $\frac{1}{t}$. The third listed author showed [13, Theorem 1.1] that almost all graphs in $G_t(N, \frac{1}{t})$ have the property (n, t)-e.c. as $N \to \infty$. The proof of this theorem is similar to the proof that almost all finite graphs have *n*-e.c. property (see, for example, [4]). Although this result implies that there are many (n, t)-e.c. graphs, it is nontrivial to construct such graphs. The third listed author [13, theorem 1.2] constructed explicitly many graphs satisfying this condition. Let q be an odd prime power and \mathbb{F}_q be the finite field with q elements. Let q be a prime power such that t|(q-1) and v be a generator of the multiplicative group of the field \mathbb{F}_q . We identify the color set with the set $\{0, \ldots, t-1\}$. The graph $P_{q,t}$ is a graph with vertex set \mathbb{F}_q , the edge between two distinct vertices being colored by the *i*th color if their sum is of the form v^j where $j \equiv i \mod t$. One can show that $P_{q,t}$ is an (n, t)-e.c. graph when

* Corresponding author.

http://dx.doi.org/10.1016/j.dam.2016.05.017 0166-218X/© 2016 Published by Elsevier B.V.

^b University of Education, Vietnam National University, Hanoi, Viet Nam

ABSTRACT

For a positive integer n, a graph is n-existentially closed or n-e.c. if we can extend all *n*-subsets of vertices in all possible ways. It is known that almost all finite graphs are *n*-e.c. Despite this result, until recently, only few explicit examples of *n*-e.c. graphs are known for n > 2. In this paper, we construct explicitly a 4-e.c. graph via a linear map over finite fields. We also study the colored version of existentially closed graphs and construct explicitly many (3, t)-e.c. graphs via permutation polynomials and multiplicative groups over finite fields.

© 2016 Published by Elsevier B.V.

E-mail addresses: nguyenminhhai06@gmail.com (N.M. Hai), trandangphuc234@gmail.com (T.D. Phuc), vinhla@vnu.edu.vn (L.A. Vinh).

q is large enough. More precise, if q is a prime power such that

$$q > 3^{(t-1)n}q^{1/2} + n2^{(t-1)n},$$

(1.1)

then $P_{q,t}$ has the (n, t)-e.c. property. (Note that, from the probabilistic argument, the upper bound for the smallest order of an (n, t)-e.c. is better than the bound in (1.1). The probabilistic bound, however, is not explicit.)

Note that the main motivation of that work is to construct new classes of *n*-e.c. graphs. From any (n, t)-e.c. graph, we can obtain an *n*-e.c. graph by dividing the color set into two sets. For a positive integer *N* and $0 < \rho < 1$, the probability space $G(N, \rho)$ consists of graphs with vertex set of size *N* so that two distinct vertices are joined independently with probability ρ . It is known that almost all graphs in $G(N, \rho)$ have the *n*-e.c. graphs. The above construction supports this statement by constructing explicitly *n*-e.c. graphs with edge density *p* for any $0 < \rho < 1$.

For any positive integers *n* and *t*, let f(n, t) be the order of the smallest (n, t)-e.c. graph. It follows from (1.1) that $f(n, t) < 9^{(t-1)n} + n2^{(t-1)n}$.

In particular, if n = 3 then $f(3, t) = O(9^{3t})$, which is of exponential order. We recall that the expressions $A \ll B$ and A = O(B) are each equivalent to the statement that $|A| \le cB$ for some constant c > 0. In [15], the second listed author gave new explicit constructions of (3, t)-graphs of polynomial order. Let p be a prime such that $t|(p-1), \mathbb{F}_p$ be the finite field of p elements, and ν be a generator of the multiplicative group of the field. We identify the color set with the set $\{0, \ldots, t-1\}$. For any $d \ge 2$, the graph $Q_{p^d,t}$ is the complete graph with the vertex set \mathbb{F}_p^d , the edge between two distinct vertices \mathbf{x}, \mathbf{y} being colored by the *i*th color if their distance

$$\|\mathbf{x} - \mathbf{y}\| = (x_1 - y_1)^2 + \dots + (x_d - y_d)^2$$

is of the form v^j where $j \equiv i \mod t$. The third listed author [15, Theorem 1.1] showed that $Q_{p^d,t}$ is an (3, t)-e.c. graph when $p \ge t^6$ and $d \ge 5$. As an immediate corollary, $f(3, t) = O(t^{30})$, which is of polynomial order.

1.1. Permutation polynomials

The main purpose of this paper is to give other explicit constructions of (3, t)-graphs via permutation polynomials with two advantages over previous known results. First, we can relax the condition t|(p-1). Second, we can construct explicitly (3, t)-e.c. graphs with arbitrarily color density. Let p be a prime and \mathbb{F}_p be the finite field of p elements. Suppose that f(x) is a polynomial over \mathbb{F}_p of degree smaller than p. A basic question in the theory of finite fields is to estimate the size V_f of the value set $\{f(a) \mid a \in \mathbb{F}_q\}$. Because a polynomial f(x) cannot assume a given value of more than deg(f) times over a field, one has the trivial bound

$$\left\lfloor \frac{p-1}{\deg(f)} \right\rfloor + 1 \le V_f \le p.$$
(1.2)

If the lower bound in (1.2) is attained, then f(x) is called a minimal value set polynomial. The classification of minimal value set polynomials is the subject of several papers; see [3,5,6,10]. The results in these papers assume that p is large compared to the degree of f(x).

If the upper bound in (1.2) is attained, then f(x) is called a permutation polynomial. The classification of permutation polynomials has received considerable attention. See the book of Lidl and Niederreiter [9] and the survey article by Mullen [11]. We identify \mathbb{F}_p with the set $\{0, 1, \ldots, p-1\}$. Let $\mathcal{A} = A_1 \cup \cdots \cup A_t$ be a partition of \mathbb{F}_p such that each A_i is a block of consecutive numbers in \mathbb{F}_p , that is for any $1 \leq i \leq t$, there exist t_i , s_i such that $A_i = \{t_i + 1, \ldots, t_i + s_i\}$. Let $f \in \mathbb{F}_p[x]$ be a permutation polynomial of degree at least 2. We also need to assume that p is large compared to the degree of f(x). For any $1 \leq i \leq t$, set $V_i = \{f(a) : a \in A_i\}$. For any $d \geq 2$, the graph $G_{f,\mathcal{A}}^d$ is the complete graph with the vertex set \mathbb{F}_p^d ; the edge between two distinct vertices \mathbf{x}, \mathbf{y} being colored by the *i*th color if their distance $||\mathbf{x} - \mathbf{y}|| \in V_i$. We claim that $G_{f,\mathcal{A}}^d$ is an (3, t)-e.c. graph when $d \geq 5$ and $|A_i| \gg \deg(f)p^{5/6} \log p$ for all $1 \leq i \leq t$.

Theorem 1.1. Let f be a nonlinear permutation polynomial over \mathbb{F}_p and let $\mathcal{A} = A_1 \cup \cdots \cup A_t$ be a partition of \mathbb{F}_p such that each A_i is a block of consecutive numbers of cardinality $|A_i| \gg \deg(f)p^{5/6} \log p$. For any $d \ge 5$, the graph $G_{f,\mathcal{A}}^d$ has (3, t)-e.c. property.

Note that these graphs are just Cayley graphs of \mathbb{F}_p^d . To construct non-Cayley (3, *t*)-e.c. graphs, we need to adjust the definition of $G_{f,A}^d$ slightly using the following notion of mixed distance between two points $\mathbf{x}, \mathbf{y} \in \mathbb{F}_p^d$:

 $\|\mathbf{x} - \mathbf{y}\|_m = 2x_1y_1 + (x_2 - y_2)^2 + \dots + (x_d - y_d)^2.$

Theorem 1.2. Let f be a nonlinear permutation polynomial over \mathbb{F}_p and let $\mathcal{A} = A_1 \cup \cdots \cup A_t$ be a partition of \mathbb{F}_p such that each A_i is a block of consecutive numbers of cardinality $|A_i| \gg \deg(f)p^{5/6} \log p$. For any $d \ge 6$, the graph $H_{f,\mathcal{A}}^d$ is the complete graph with the vertex set \mathbb{F}_p^d ; the edge between two distinct vertices \mathbf{x}, \mathbf{y} being colored by the ith color if their mixed distance

$$\|\boldsymbol{x} - \boldsymbol{y}\|_m \in \{f(a) : a \in A_i\}.$$

Then $H_{f,A}^d$ is a non-Cayley (3, t)-e.c. graphs.

The proof of Theorem 1.2 is exactly the same as the proof of Theorem 1.1 and is left to the interested reader.

Download English Version:

https://daneshyari.com/en/article/4949944

Download Persian Version:

https://daneshyari.com/article/4949944

Daneshyari.com