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a b s t r a c t

Optimal alignment kernels are graph similarity functions defined as pointwise maximizers
of a set of positive-definite kernels. Due to the max-operation, optimal alignment kernels
are indefinite graph kernels. This contribution studies how the max-operation transforms
the geometry of the associated feature space and how standard pattern recognition
methods such as linear classifiers can be extended to those transformed spaces. The
main result is the Graph Representation Theorem stating that a graph is a point in some
geometric space, called orbit space. This result shows that the max-operation transforms
the feature space to a quotient by a group action. Orbit spaces are well investigated and
easier to explore than the original graph space. We derive a number of geometric results,
translate them to graph spaces, and show how the proposed results can be applied to
statistical pattern recognition.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In different fields of structural pattern recognition, such as computer vision, chemo- and bioinformatics, objects are
naturally represented by attributed graphs [6,12,16,40]. One persistent problem is the gap between structural and statistical
methods in pattern recognition [5,8]. This gap refers to a shortcoming of powerful mathematical methods that combine the
advantages of structural representations with the advantages of statistical methods defined on Euclidean spaces.

One reason for this gap is an insufficient understanding of the geometric structure of graph spaces. The geometry of any
space depends on the choice of the underlying distance function. For example, spaces endowed with an intrinsic metric
have a richer geometric structure than spaces endowedwith an arbitrary distance. The prime example are Euclidean spaces,
which have a fundamental status in mathematics. The abundant geometric structure of Euclidean spaces is introduced by
an inner product that in turn induces the Euclidean metric.

Similarly as inner products, optimal alignment kernels have the potential to introduce a less abundant but still well-
developed geometric structure into graph spaces. The potential arises from the fact that the definition of optimal alignment
kernels implicitly involves inner products. An optimal alignment kernel is a graph similarity function defined as a pointwise
maximizer of a set of positive-definite kernels, where the maximum is taken over all possible one-to-one correspondences
(alignments) between the nodes of both graphs. Since positive-definite kernels are not closed under the max-operation
[1,44], optimal alignment kernels are indefinite graph kernels. Consequently, the geometric structure introduced by optimal
alignment kernels is limited.

Although it is well-known that graph alignment kernels are indefinite graph kernels, it is unclear how themax-operation
transforms the geometry of the feature space associated to the underlying positive-definite kernels. In addition, it is also
unclear how pattern recognition methods like linear classifiers can be extended to those transformed feature spaces.
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In this contribution, we study the geometry of graph spaces endowed with an optimal alignment kernel. The main result
is the Graph Representation Theorem stating that a graph is a point in some geometric space, called orbit space. This result
shows that the max-operation transforms the associated feature space to a quotient of a Euclidean space by a group action.
Orbit spaces are well investigated, provide access to a plethora of existing results, and aremuch easier to explore than graph
spaces. We derive several geometric concepts and results, translate them to graph spaces, and show how the proposed
results can be applied to generalize linear classifiers and other statistical pattern recognition methods to graph spaces.
The proposed orbit space framework provides a mathematical foundation for narrowing the gap between structural and
statistical pattern recognition and places existing learning methods in graph spaces on a theoretically sound basis.

The rest of this paper is structured as follows: Section 2 discusses related work. Section 3 introduces graph alignment
spaces. In Sections 4 and 5, we present the Graph Representation Theorem and derive general geometric results. Section 6
places the results into the context of statistical pattern recognition. Finally, Section 7 concludes with a summary of themain
results.

2. Related work

Graph alignment kernels and their induced distances form a common and widely applied class of graph (dis-)similarity
functions [46]. Though graph alignment kernels are indefinite graph kernels, they have been applied to support vector
learning by Geibel et al. [18,28] and shortly after by Fröhlich et al. [14].

The problem of computing such graph (dis-)similarities is referred to as the graph matching problem [6,12,40,46]. The
graphmatching problem can be formulated as a quadratic assignment problem [41], which is known to beNP-complete [17].
Consequently, the majority of work on graph alignment distances is devoted to devise efficient algorithms and heuristics
for solving the underlying graph matching problem [46].

In contrast to the amount of work on practical and computational aspects of the graph matching problem, there is only
few work on theoretical properties of graph spaces [23,31]. Hurshman and Janssen showed that graph spaces endowed
with distances based on the maximum common subgraph induce a discrete topology on the set of isomorphism classes
of graphs [23]. Then they introduced and studied the concept of uniform continuity of graph parameters. Graph spaces
endowedwith an optimal alignment kernel have been first investigated by [31], where the focuswas on analytical properties
for the differential machinery.

A similar approach as in [31] has been followed by Feragen et al. [9,11,10] for tree shapes. Tree-shape spaces are also
orbit spaces, but additionally include continuous transitions in the tree topology. This additional requirement leads to a
substantially different geometric structure. Feragen et al. studied the geodesic structure of tree-shape spaces that transfers
to graph spaces as correctly hypothesized by Feragen et al. (see Theorem4.7).More generally, this contribution can be placed
into the context of statistical analysis of non-Euclidean spaces in the spirit of [42,45] for complex objects, for tree-structured
data [10,45], and for shapes [7,37]. Examples of statistical methods adapted to graphs are the sample mean [19,29,30,36],
central clustering algorithms [20,21,35,29], learning vector quantization [32,34], and generalized linear classifiers [25,24].

3. Graph alignment spaces

3.1. Attributed graphs

Let A be the set of node and edge attributes. We assume that A contains a distinguished symbol ν denoting the null-
attribute.

Definition 3.1. An attributed graph is a triple X = (V, E, α) consisting of a finite set V ≠ ∅ of nodes, a set E ⊆ V × V of
edges, and an attribute function α : V × V → A such that α(i, j) = ν if and only if (i, j) ∉ E for all distinct nodes i, j ∈ V .

The attribute function α assigns an attribute to each pair of nodes. Node attributes may take any value from A, edges
have non-null attributes, and non-edges are labeled with null-attribute ν. The node set of a graph X is occasionally referred
to as VX , its edge set as EX , and its attribute function as αX . By GA we denote the set of attributed graphs with attributes
from A. The order |X | of graph X is its number |VX | of nodes.

Graphs can be directed and undirected. Attributes can take any values including binary values, discrete symbols,
numerical values, vectors, strings, and combinations thereof. Thus, the definition of attributed graph is sufficiently general to
cover awide class of graphs such as binary graphs from graph theory, weighted graphs,molecular graphs, protein structures,
and many others.

3.2. Optimal alignment kernels

The inner product induces a rich geometric structure into Euclidean spaces. In a similar way, we want to induce a
geometric structure into graph spaces by adapting the inner product to graphs. The challenge is that neither the graph
space GA nor the attribute set A are vector spaces, in general. A solution to this problem are optimal alignment kernels. An
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