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an earlier paper we estimated the cross-correlation measure of a random family of binary

sequences. In this paper, we sharpen these earlier results by showing that for random

families, the cross-correlation measure converges strongly, and so has limiting distribution.
We also give sharp bounds to the minimum values of the cross-correlation measure, which
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1. Introduction

Recently, in a series of papers the pseudorandomness of finite binary sequences Ey = (eq, ..., ey) € {—1, 1}" has been
studied. In particular, measures of pseudorandomness have been defined and investigated; see [3,6,9,11] and the references
therein.

For example, Mauduit and Sarkozy [11] introduced the correlation measure C(Ey) of order k of the binary sequence Ey.
Namely, for a k-tuple D = (dy, ..., dy) with non-negative integers0 < d; < --- <dy, < NandM € NwithM +dy < N
write

M
Vi(Ex. M. D) = "enid, - - - €nidy.-
n=1

Then Ci(Ey) is defined as

M

E €nidy - - - Cnidy
n=1

This measure has been widely studied, see, for example [1-3,6,8,12,17]. In particular, Alon, Kohayakawa, Mauduit,
Moreira and R&dl [3] obtained the typical order of magnitude of C(Ey). They proved that, if Ey is chosen uniformly from
{—1, +1}N, then for all 0 < & < 1/16 the probability that

2 INtog (N CEx) < - INtog (N
— 0, — (0]
5 8\k) = =74 gk
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Cy(Ey) = max |V(Ey, M, D)| = max
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holds for every integer 2 < k < N/4is at least 1 — ¢ if N is large enough. (Here, and in what follows, we write log for the
natural logarithm, and log,, for the logarithm to base a.)

They also showed in [ 3], that the correlation measure C(Ey) is concentrated around its mean E[Cy]. Namely, foralle > 0
and integer function k = k(N) with 2 < k < log N — loglog N the probability that

Ck(En)
E[Ce]
holds is at least 1 — ¢ if N is large enough.

Recently, K.-U. Schmidt studied the limiting distribution of Ci(Ey) [17]. He showed that if ey, e5,... € {—1, 41} are
chosen independently and uniformly, then for fixed k

1—e<

<1+e¢

Cv(E
% — 1 almost surely,
2N log (kfl)
asN — oo, where Ey = (eq, ..., ey).

Let us now turn to the minimal value of Cy(Ey). Clearly,
min{Cy(Ey) : Ey € {—1,4+1}} =1 foroddk,

where the minimum is reached by the alternating sequence (1, —1, 1, —1, .. .). However, for even order, Alon, Kohayakawa,
Mauduit, Moreira and RodlI [2] showed that

1 N
min{Cy(Ey) : Eny € {—1, +1}} > 5 \\Zk—i— IJ’ (1)

see also [17].
In order to study the pseudorandomness of families of finite binary sequences instead of single sequences, Gyarmati,
Mauduit and Sarkézy [10] introduced the notion of the cross-correlation measure (see also the survey paper [15]).

Definition 1. For positive integers N and S, consider a map
GN,S : {15 25 sy S} - {_15 +1}Na

and write Gy 5(s) = (e1(s), ..., ex(s)) € (=1, 1}V (1 <s < S).
The cross-correlation measure @y, (GN,S) of order k of Gy s is defined as

M
@ (Gy,s) = max Z €ntd; (S1) -+ - entq, (S|,

n=1
where the maximum is taken over all integers M, dq, ...,dyand 1 < sy,...,sx < Ssuchthat0 <d; <dy <--- <dy <
M +dy < Nandd; # dj ifs; = Sj.
We remark that in [10] only injective maps Gy s were considered, and the cross-correlation measure is defined for the
families # = {Gys(s) : s=1,2,...,5} of sizeS.
The typical order of magnitude of @y, (GNqs) was established in [ 14] for large range of k and for random maps Gy s, i.e. when
alle,(s) € {—1,41} (1 <n <N, 1 <s < S)are chosen independently and uniformly.

Theorem 1. For a given ¢ > 0, there exists Ny, such that if N > Ng and 1 < log, S < N/12, then we have with probability at
least 1 — ¢, that

2 N 5 N
5\/N (log(l) +klog5) < & (Gys) < 2\'/N (log(k) —l—klogS)
3

for every integer k with2 < k < N/(6log, S).

Our first result tells that analogously to the correlation measure of binary sequences, the cross-correlation measure of
families @ (Gy s) is concentrated around its mean E [ &y (Gy )] if k is small enough.

Theorem 2. For any fixed constant ¢ > 0 and any integer function k = k(N) with2 < k < (log N + logS)/loglogN, there is
a constant Ny > 12 log, S for which the following holds. If N > Ny, then the probability that

Pi(Gn.s)
E [®(Gn.s)]

holds is at least 1 — ¢.

1—e< <1l+4¢
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