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a b s t r a c t

A path separator of a graph G is a set of paths P = {P1, . . . , Pt} such that for every pair of
edges e, f ∈ E(G), there exist paths Pe, Pf ∈ P such that e ∈ E(Pe), f ∉ E(Pe), e ∉ E(Pf )
and f ∈ E(Pf ). The path separation number of G, denoted psn(G), is the smallest number of
paths in a path separator. We shall estimate the path separation number of several graph
families – including complete graphs, random graph, the hypercube – and discuss general
graphs as well.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Separation of combinatorial objects is a well-studied question in mathematics and engineering, dating back to at least
Rényi [18]. In fact the notion goes by many terms: identification or, in engineering, testing are also used for the same idea
[4,6,9,11,12,19].

Let H = (X, E) be a hypergraph with ground set X and edge set E. We say that L ⊂ E is a weak separating system if for
all x, y ∈ X, x ≠ y there exists an A ∈ L such that either x ∈ A or y ∈ A, but {x, y} ⊄ A. Similarly, L is a strong (or complete)
separating system if for all x, y ∈ X, x ≠ y there exist Ax, Ay ∈ L such x ∈ Ax and y ∈ Ay, but x ∉ Ay and y ∉ Ax, as defined
by Dickson [5]. Observe that any strong separating system is also a weak separating system. In several applications X is just
the vertices or edges of a certain graph G, while E can be a set of closed neighborhoods, cycles, closed walks, paths, etc. of G,
see e.g. [8,6,12,19].

In this paper we consider strong separation of the edges of graphs by paths. Since we deal with strong separation in this
paper, we will just use the term ‘‘separating system’’ or ‘‘separator’’ when referring to a strong separating system. Let G be
a graph with at least two edges. A path separator of G is a set of paths P = {P1, . . . , Pt} such that for every pair of distinct
edges e, f ∈ E(G), there exist paths Pe, Pf ∈ S such that e ∈ E(Pe) and f ∈ E(Pf ) but e ∉ E(Pf ) and f ∉ E(Pe). The path
separation number of G, denoted psn(G), is the smallest number of paths in a path separator. If G has exactly one edge then
we say that psn(G) = 1 and if G is empty then we say that psn(G) = 0.
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Rényi [18] conjectured that O(n) paths suffice for the weak separation in any graph with n vertices. This problem is still
unsolved, although Falgas-Ravry, Kittipassorn, Korándi, Letzer and Narayanan [8] recently made some progress for proving
it for trees and certain random graphs. We propose the stronger Conjecture 11: O(n) paths are sufficient even for strong
separation.

In this paper we prove this conjecture for complete graphs (Theorem 4), forests (Theorem 5), higher dimensional cubes
(Theorem 8), and not too sparse random graphs (Theorem 9). It is somehow surprising since generally strong separation
may need many more paths than weak separation, as we remark following Theorem 8.

Denote H2(x) to be the binary entropy function, i.e. H2(x) = −x log2 x − (1 − x) log2(1 − x), where x ∈ (0, 1). Denote
Kn to be the complete graph and Pn to be the path on n vertices. The parameters δ(G) and ∆(G) denote the minimum and
maximum degree of G, respectively.

Fact 1 follows from the fact that the edge set itself is a path separator if there are at least 2 edges and psn(G) = m if
m = 1 or m = 0.

Fact 1. Let G be a graph with m edges. Then psn(G) ≤ m.

Because of Fact 2, we will always assume that the graph G that we are working with is connected.

Fact 2. If G is a graph that is the vertex-disjoint union of graphs G1 and G2 then psn(G) = psn(G1) + psn(G2).

When G is a forest we determine psn(G) in Theorem 5, otherwise Theorem 3 estimates it. Note that the proof of the lower
bound in Theorem 3 does not use the structure of paths, only that a path has at most n − 1 edges.

Theorem 3. Let G be a graph on n ≥ 4 vertices and m ≥ 2(n − 1) edges, then

m lnm
n ln(en/2)

<
log2 m

H2 ((n − 1)/m)
≤ psn(G) ≤ 4n⌈log2⌈m/n⌉⌉ + 2n < 5n log2 n.

Theorem 4 establishes that the path separation number of the complete graph is at most 2n + 4 and Theorem 3 implies
that it is at least (1 − o(1))n. Of course, the bound 2n + 4 is not sharp even for n = 5 or 6, since by Fact 1 we have that
psn(Kn) ≤ n(n − 1)/2 < 2n + 4 in these cases.

Theorem 4. For n ≥ 10 we have psn(Kn) ≤ 4⌈n/2⌉ + 2 ≤ 2n + 4.

Theorem 5 gives an explicit formula for the path separation number of a forest F depending only on the degree sequence
and the number of connected components of F that are, themselves, paths. A path-component of a graph is a connected
component that is a path.

Theorem 5. Let F be a forest with v1 vertices of degree 1, v2 vertices of degree 2 and p path-components. Then psn(F) =

v1 + v2 − p.

Corollary 6. The smallest path separation number for a tree T on n vertices is ⌈n/2⌉ + 1. This is achieved with equality if and
only if (a) n is even and all the degrees of T are either 1 or 3 or (b) n is odd, T has one vertex of degree either 2 or 4 and all other
vertices have degree either 1 or 3.

Corollary 7. If G is a tree with n vertices then psn(G) = n − 1 if and only if G is a subdivided star.

Theorem 8 considers the graph of the d-dimensional hypercube Qd, whose path separation number shows different
behavior from our previous results.

Theorem 8. For d ≥ 2, let Qd denote the d-dimensional hypercube. Then d2
4 ln d ≤ psn(Qd) ≤ 3d2 + d − 4.

Theorem8 also demonstrates the difference betweenweak and strong separation: Honkala, Karpovsky and Litsyn proved
in [12] that essentially d + log2 d cycles are necessary and sufficient for a weak separation of the edges of the hypercube,
which easily translates to a weak path separator having essentially at most 2(d+ log2 d) paths, that is, much less than what
is required in any strong separating system.

In Theorem 9 we address the Erdős–Rényi random graph in which each pair of vertices is, independently, chosen to be
an edge with probability p. We say that a sequence of random events occurs with high probability if the probability of the
events approaches 1 as n → ∞.

Theorem 9. Let p = p(n) > 1000 log n/n and s = 4 log n/ log(pn/ log n). Then psn(G(n, p)) = O(psn) with high probability.
In particular, for α > 0 and p = p(n) > nα−1 this gives psn(G(n, p)) = Θ(pn) with high probability and for p =

p(n) > 10 log n/n it yields that psn(G(n, p)) = O(pn log n), with high probability.
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