ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On incidence coloring conjecture in Cartesian products of graphs

Petr Gregor^a, Borut Lužar^{b,*}, Roman Soták^c

^a Department of Theoretical Computer Science and Mathematical Logic, Charles University, Prague, Czech Republic

^b Faculty of Information Studies, Novo mesto, Slovenia

^c Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia

ARTICLE INFO

Article history: Received 9 December 2015 Received in revised form 18 April 2016 Accepted 23 April 2016 Available online xxxx

Keywords: Incidence coloring Cartesian product Locally injective homomorphism

ABSTRACT

An *incidence* in a graph *G* is a pair (v, e) where *v* is a vertex of *G* and *e* is an edge of *G* incident to *v*. Two incidences (v, e) and (u, f) are *adjacent* if at least one of the following holds: (a) v = u, (b) e = f, or (c) $vu \in \{e, f\}$. An *incidence coloring* of *G* is a coloring of its incidences assigning distinct colors to adjacent incidences. It was conjectured that at most $\Delta(G) + 2$ colors are needed for an incidence coloring of any graph *G*. The conjecture is false in general, but the bound holds for many classes of graphs. We introduce some sufficient properties of the two factor graphs of a Cartesian product graph *G* for which *G* admits an incidence coloring with at most $\Delta(G) + 2$ colors.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An *incidence* in a graph *G* is a pair (v, e) where v is a vertex of *G* and *e* is an edge of *G* incident to v. The set of all incidences of *G* is denoted I(G). Two incidences (v, e) and (u, f) are *adjacent* if at least one of the following holds: (a) v = u, (b) e = f, or (c) $vu \in \{e, f\}$ (see Fig. 1). An *incidence coloring* of *G* is a coloring of its incidences such that adjacent incidences are assigned distinct colors. The least *k* such that *G* admits an incidence coloring with *k* colors is called the *incidence chromatic* number of *G*, denoted by $\chi_i(G)$. An incidence coloring of *G* is called optimal if it uses precisely $\chi_i(G)$ colors.

The incidence coloring of graphs was defined in 1993 by Brualdi and Massey [3] and attracted considerable attention as it is related to several other types of colorings. As already observed by the originators, it is directly connected to *strong edge-coloring*, i.e. a proper edge-coloring such that the edges at distance at most two receive distinct colors. Indeed, consider a bipartite graph *H* with the vertex set $V(H) = V(G) \cup E(G)$ and two vertices $v \in V(G)$ and $e \in E(G)$ adjacent in *H* if and only if *v* is incident to *e* in *G*; that is, *H* is the graph *G* with every edge subdivided. Then, a strong edge-coloring of *H* corresponds to an incidence coloring of *G*. This in turn means that the incidence chromatic number of a graph *G* is equal to the strong chromatic index of *H*.

A graph *G* is called a $(\Delta + k)$ -graph if it admits an incidence coloring with $\Delta(G) + k$ colors for some positive integer *k*. A complete characterization of $(\Delta + 1)$ -graphs is still an open problem. While it is a trivial observation that complete graphs and trees are such, it is harder to determine additional classes. This problem has already been addressed in several papers; it was shown that Halin graphs with maximum degree at least 5 [18], outerplanar graphs with maximum degree at least 7 [14], planar graphs with girth at least 14 [2], and square, honeycomb and hexagonal meshes [8] are $(\Delta + 1)$ -graphs. In fact, every *n*-regular graph with a partition into n + 1 (perfect) dominating sets is such, as observed by Sun [17].

* Corresponding author. E-mail addresses: gregor@ktiml.mff.cuni.cz (P. Gregor), borut.luzar@gmail.com (B. Lužar), roman.sotak@upjs.sk (R. Soták).

http://dx.doi.org/10.1016/j.dam.2016.04.030 0166-218X/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: P. Gregor, et al., On incidence coloring conjecture in Cartesian products of graphs, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.04.030

ARTICLE IN PRESS

P. Gregor et al. / Discrete Applied Mathematics 🛚 (💵 💷)

Fig. 1. Three types of adjacent incidences.

Theorem 1 (Sun, 2012). If G is an n-regular graph, then $\chi_i(G) = n + 1$ if and only if V(G) is a disjoint union of n + 1 dominating sets.

Observation 1. In any optimal incidence coloring c of a regular $(\Delta + 1)$ -graph G, for every vertex v there is a color c_v such that for every edge uv, it holds $c(u, uv) = c_v$.

Similarly intriguing as the lower bound is the upper bound. Brualdi and Massey [3] proved that $\chi_i(G) \le 2\Delta(G)$ for every graph *G*. Aside to that, they proposed the following.

Conjecture 1 (Brualdi and Massey, 1993). For every graph G,

$$\chi_i(G) \leq \Delta(G) + 2.$$

Conjecture 1 has been disproved by Guiduli [6] who observed that incidence coloring is a special case of directed star arboricity, introduced by Algor and Alon [1]. Based on this observation, it was clear that Paley graphs are counterexamples to the conjecture. Nevertheless, Guiduli [6] decreased the upper bound for simple graphs.

Theorem 2 (Guiduli, 1997). For every simple graph G,

 $\chi_i(G) \leq \Delta(G) + 20 \log \Delta(G) + 84.$

Although Conjecture 1 has been disproved in general, it has been confirmed for many graph classes, e.g. cubic graphs [10], partial 2-trees (and thus also outerplanar graphs) [7], and powers of cycles (with a finite number of exceptions) [11], to list just a few. We refer an interested reader to [15] for a thorough online survey on incidence coloring results.

Recently, Pai et al. [12] considered incidence coloring of hypercubes. Recall that the *n*-dimensional hypercube Q_n for an integer $n \ge 1$ is the graph with the vertex set $V(Q_n) = \{0, 1\}^n$ and edges between vertices that differ in exactly one coordinate. They proved that the conjecture holds for hypercubes of special dimensions in the following form.

Theorem 3 (Pai et al., 2014). For every integers $p, q \ge 1$,

(i) $\chi_i(Q_n) = n + 1$, if $n = 2^p - 1$; (ii) $\chi_i(Q_n) = n + 2$, if $n = 2^p - 2$ and $p \ge 2$, or $n = 2^p + 2^q - 1$, or $n = 2^p + 2^q - 3$ and $p, q \ge 2$.

They also obtained some additional upper bounds for the dimensions of other forms and proposed the following conjecture.

Conjecture 2 (Pai et al., 2014). For every $n \ge 1$ such that $n \ne 2^p - 1$ for every integer $p \ge 1$,

$$\chi_i(Q_n) = n + 2.$$

Motivated by their research, we consider incidence coloring of Cartesian products of graphs; in particular we study sufficient conditions for the factors such that their Cartesian product is a $(\Delta + 2)$ -graph. Conjecture 2 has recently been confirmed also by Shiau, Shiau and Wang [13], who also considered Cartesian products of graphs, but in a different setting, not limiting to $(\Delta + 2)$ -graphs.

In Section 3, we show that if one of the factors is a $(\Delta + 1)$ -graph and the maximum degree of the second is not too small, Conjecture 1 holds. As a corollary, Conjecture 2 is also answered in affirmative. In Section 4, we introduce two classes of graphs, 2-permutable and 2-adjustable, such that the Cartesian product of factors from each of them is a $(\Delta + 2)$ -graph. In Section 5, we discuss further work and propose several problems and conjectures.

2. Preliminaries

In this section, we present additional terminology used in the paper. The *Cartesian product of graphs G and H*, denoted by $G \Box H$, is the graph with the vertex set $V(G) \times V(H)$ and edges between vertices (u, v) and (u', v') whenever

- $uu' \in E(G)$ and v = v' (a *G*-edge), or
- u = u' and $vv' \in E(H)$ (an *H*-edge).

Please cite this article in press as: P. Gregor, et al., On incidence coloring conjecture in Cartesian products of graphs, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.04.030

Download English Version:

https://daneshyari.com/en/article/4949967

Download Persian Version:

https://daneshyari.com/article/4949967

Daneshyari.com