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a b s t r a c t

A monotone arithmetic circuit computes a given multivariate polynomial f if its values on
all nonnegative integer inputs are the same as those of f . The circuit counts f if this holds
for 0–1 inputs; on other inputs, the circuit may output arbitrary values. The circuit decides
f if it has the same 0–1 roots as f . We first show that some multilinear polynomials can
be exponentially easier to count than to compute them, and that some polynomials can
be exponentially easier to decide than to count them. Our main results are general lower
bounds on the size of counting circuits.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider computational complexity of multivariate polynomials with nonnegative integer coefficients:

f (x1, . . . , xn) =


e∈E

ce
n

i=1

xeii , (1)

where E ⊂ Nn is a finite set of vectors of nonnegative integers, coefficients ce are positive integers, and x0i = 1; here and
throughout, N = {0, 1, 2, . . .}. Each coefficient ce stands for the number of times the monomial p =

n
i=1 x

ei
i appears in

f ; the support of such a monomial is the set Xp = {xi : ei ≠ 0} of variables appearing in it with nonzero exponents, and
the degree of the monomial p is the sum e1 + · · · + en of its exponents. The polynomial is multilinear if E ⊆ {0, 1}n, and is
homogeneous of degree d if all its monomials have the same degree d.

A natural model for compact representation of such polynomials (with nonnegative coefficients) is that of monotone
arithmetic (+, ×) circuits. Such a circuit is a directed acyclic graph with three types of nodes: input, addition (+), and
multiplication (×). Input nodes have fanin zero, and correspond to variables x1, . . . , xn. All other nodes have fanin two, and
are called gates. Each gate computes either the sum or product of its inputs. The size of a circuit is the number of gates in it.

Every such circuit syntactically produces a unique polynomial h with nonnegative integer coefficients in a natural way:
the polynomial produced at an input gate xi consists of a singlemonomial xi, and the polynomial produced at a sum (product)
gate is the sum (product) of polynomials produced at its inputs; we use distributivity to write a product of polynomials as
a sum of monomials. The polynomial h produced by the circuit itself is the polynomial produced at its output gate. Given a
polynomial f (x1, . . . , xn), we say that the circuit:
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Fig. 1. A circuit of size 5 computes the polynomial F = (x+y)(y+z)(x+z), counts the polynomial f = 2xyz+2xy+2xz+2yz, and decides the polynomial
g = xy + xz + yz. Gate u is the output gate.

• computes f (exactly) if h(a) = f (a) holds for every a ∈ Nn;
• counts f if h(a) = f (a) holds for every a ∈ {0, 1}n;
• decides f if for every a ∈ {0, 1}n, h(a) = 0 exactly when f (a) = 0.

In this paper we are mainly interested in (+, ×) circuits counting a given polynomial f . Such a circuit needs only to
correctly compute the restriction f : {0, 1}n → N of f on 0–1 inputs. Note that, if the polynomial f is monic (has no
coefficients > 1) then, on every 0–1 input a ∈ {0, 1}n, the value f (a) taken by f on a is the number of monomials of f
satisfied by (evaluated to 1 on) a. For example, in the case of the permanent polynomial

Pern(x) =


σ

n
i=1

xi,σ (i) (2)

with the summation over all permutations σ of [n] = {1, . . . , n}, its value Pern(a) on every input a ∈ {0, 1}n×n is the number
of perfect matchings in the bipartite n×n graph Ga specified by a; nodes i and j are adjacent in Ga if and only if aij = 1. Thus,
a circuit counting Per outputs the number of perfectmatchings in Ga, whereas a circuit deciding this polynomial merely tells
us whether Ga contains a perfect matching. On the other hand, computing circuits must actually solve the same counting
problem but in the case when all nonnegative integers (not just 0 and 1) are allowed as weights.

Remark 1. Let us stress that we only consider monotone arithmetic circuits. The reason is that counting (+, −, ×) circuits
are already omnipotent: they are as powerful as boolean {∨, ∧, ¬} circuits, for which no super-linear lower bounds are
known so far. This holds because then each of the three boolean operations can be simulated over {0, 1}: x ∧ y by x × y, ¬x
by 1 − x, and x ∨ y by x + y − xy.

If a (+, ×) circuit computes, counts or only decides a given polynomial f , what can then be said about the structure of
the produced by the circuit polynomial h? To answer these questions, we associate with every polynomial f the following
three sets (this notation will be used throughout the paper):

• M(f ) is the set of all monomials of f ;
• S(f ) =


Xp : p ∈ M(f )


is the support of f ;

• L(f ) ⊆ S(f ) is the lower support of f consisting of all minimal sets of S(f ); a set of a family of sets isminimal if it contains
no other set of the family.

We have the following information about the structure of the produced by a circuit polynomial h (see Lemma 6). If the
circuit:

• computes f then h = f , and hence, also M(h) = M(f );
• counts f then S(h) = S(f );
• decides f then L(h) = L(f ).

Thus, in the case of circuits exactly computing f we have a full knowledge about the produced by the circuit polynomial
h: this polynomial must just coincidewith f (the samemonomials with the same coefficients). This ensures that no ‘‘invalid’’
monomials can be formed during the computation, and severely limits the power of such circuits. In particular, if the
target polynomial f is homogeneous (all monomials have the same degree) then the circuit itself must be homogeneous:
polynomials produced at its gates must be also homogeneous. If the target polynomial f is multilinear (no variable has
degree larger than 1) then the circuit must be also multilinear: the polynomials produced at inputs of each product gate
must depend on disjoint sets of variables. These limitations were essentially exploited in all known proofs of lower bounds
for monotone arithmetic circuits, including [15,17,10,21,18,6,19,7].

In the case of counting circuits, M(h) = M(f ) needs not to hold, due to the multiplicative idempotence axiom x2 = x
valid on 0–1 inputs. That is, here exponents (and hence, degrees of monomials) do not matter (see Fig. 1). For example, a
polynomial f = 2x + yz is counted by any circuit producing a polynomial of the form h = 2xa + ybzc with a, b, c ∈ N \ {0}.
That is, nonzero exponents of the monomials in produced by counting circuits polynomials may be arbitrary: we only know
which sets of variables these monomials must contain, but we do not know their actual degrees. In deciding circuits, even
S(h) = S(f ) needs not to hold, due to the additional absorption axiom x + xy = x.
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