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a b s t r a c t

We study the classic Graph Motif problem. Given a graph G = (V , E) with a set of colors
for each node, and amultisetM of colors, we seek a subtree T ⊆ G, and a coloring assigning
to each node in T a color from its set, such that T carries exactly (also with respect to
multiplicity) the colors in M . Graph Motif plays a central role in the study of pattern
matching problems, primarilymotivated from the analysis of complex biological networks.

Previous algorithms for Graph Motif and its variants either rely on techniques for
developing randomized algorithms that − if derandomized − render them inefficient, or
the algebraic narrow sieves technique for which there is no known derandomization. In
this paper, we present fast deterministic parameterized algorithms for GraphMotif and its
variants. Specifically, we give such an algorithm for the more general Graph Motif with
Deletions problem, followed by faster algorithms for GraphMotif and other well-studied
special cases. Our algorithms make non-trivial use of representative families, and a novel
tool that we call guiding trees, together enabling the efficient construction of the output
tree.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the advent of network biology and complex network analysis in general, the study of pattern matching problems
in graphs has become of major importance [10,15]. Indeed, the term ‘‘graph motif’’ plays a central role in this context, with
different node colors used to model different functionalities of the network (see, e.g., [16,6]). Due to the generic nature of
Graph Motif (GM) (also known as the Topology-Free Network Query problem), the so called motif analysis approach has
become useful also in the study of social networks (see, e.g., [21] and the references therein).

GM is a natural variant of classic patternmatching problems, where the topology of the patternM is unknown or of lesser
importance. Given a graph G = (V , E)with a set of colors for each node, and amultisetM of colors, we seek a subtree T ⊆ G,
and a coloring assigning each node in T a color from its set, such that T carries exactly (also with respect to multiplicity)
the colors in M . We call T an occurrence of M in G. To allow more flexibility in the definition of an occurrence, and since
biological network data often contains noise, a generalized version of GM allows deleting colors fromM (see below).

Parameterized algorithms solve NP-hard problems by confining the combinatorial explosion to a parameter k. More
precisely, a problem is fixed-parameter tractable (FPT) with respect to a parameter k if it can be solved in time O∗(f (k)) for
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Fig. 1. (A) An input for GMD , where a and c are associated with white, b is associated with both white and gray, and d is associated with gray. (B) Two
possible solutions: Each solution consists of a subtree of G on k = 3 nodes, where each node is given one of its associated colors, and the number of
occurrences of each color in each solution is bounded by its number of occurrences inM .

some function f , where O∗ hides factors polynomial in the input size. Since GM is NP-complete [16], there is a growing body
of literature studying its parameterized complexity (see the comprehensive survey in [24]). In this paper, we present fast
deterministic parameterized algorithms for GM and its variants.

1.1. Problem statement

The most general variant considered in this paper is Graph Motif with Deletions (GMD): the input is a set of colors
C , a multiset M of colors from C , and an undirected graph G = (V , E). The nodes in V are associated with colors via a
(set-)coloring Col : V → 2C . We are also given a parameter k ≤ |M|.

We need to decide if there exist a subtree T = (VT , ET ) of G on k nodes,1 and a coloring col : VT → C that assigns a color
from Col(v) to each node v ∈ VT , such that

∀c ∈ C : |{v ∈ VT : col(v) = c}| ≤ occ(c), (1)

where occ(c) is the number of occurrences of a color c in M (see Fig. 1).

Special cases: Restricted GMD (RGMD) is the special case ofGMD where for any node v ∈ V , |Col(v)| = 1. Also,GM and RGM
are the special cases of GMD and RGMD, respectively, where deletions are not allowed (i.e., the inequality in (1) is replaced
by equality, and k = |M|).

We briefly note that given an instance (C,M,G = (V , E), Col, k) ofGMD, it is possible to construct an equivalent instance
(C ′,M ′,G′

= (V ′, E ′), Col′, k′) of GM as follows. Let c ∉ C be a new color, and define C ′
= C ∪ {c} and M ′

= M ∪ {c},
i.e., c has one occurrence in M ′. For each vertex v ∈ V , we generate |M| − k + 1 vertices vi, 0 ≤ i ≤ |M| − k,
connected to v as a path whose first vertex is v0. Formally, let V ′

= V ∪ {vi : v ∈ V , i ∈ {0, 1, . . . , |M| − k}} and
E ′

= E ∪ {{v, v0} : v ∈ V } ∪ {{vi−1, vi} : v ∈ V , i ∈ {1, 2, . . . , |M| − k}}. Now, let Col′(v) = Col(v), Col(v0) = {c} and
Col(vi) = C for all v ∈ V and i ∈ {1, 2, . . . , |M| − k}. Finally, define k′

= |M ′
| (i.e., k′

= k + (|M| − k) + 1). It is easy to
verify that any valid solution for the GMD instance induces a valid solution for the GM instance, and vice versa. However,
the parameter k′ can be significantly larger than k.

1.2. Known results and our contribution

GMD and its variants have received considerable attention since GM was introduced by Lacroix et al. [16] (the use of
deletions was introduced by Bruckner et al. [6]). The paper [16] also shows that RGM is NP-hard when M is a set and G is a
tree. Even seemingly simpler cases of RGM are known to be NP-hard (see [9,2,8]). Moreover, a natural optimization version
of RGMD, minimizing the number of deletions fromM , is hard to approximate within factor |V |

1
3 −ϵ [22].

On the positive side, using techniques for developing randomized parameterized algorithms, many such algorithms
have been obtained for GMD and its variants [3,5–7,13,14,19,20]. Some of these algorithms can be derandomized, resulting,
however, in inefficient algorithms. In particular, Fellows et al. [9] gave a deterministic algorithm for RGM that runs in time
O∗(174k), based on a derandomization of the color coding technique [1]. Currently, the best randomized algorithm for GMD,
due to Björklund et al. [5], runs in time O∗(2k). This algorithm is based on the narrow sieves technique [4], for which there is
no known derandomization. Thus, prior to our study, the existence of a fast deterministic parameterized algorithm for GMD
was open.

In this paper, we present fast deterministic parameterized algorithms for GMD and its variants. In particular, we develop
an O∗(6.86k) time algorithm for GMD, an O∗(5.22k) time algorithm for GM, and an O∗(5.18k) time algorithm for RGMD.

1 In an alternative definition for GMD , one seeks a connected subgraph S of G. This is equivalent to our definition (simply consider some spanning tree T
of S).
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