

Note

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Fractional spanning tree packing, forest covering and eigenvalues

Yanmei Hong^a, Xiaofeng Gu^{b,*}, Hong-Jian Lai^c, Qinghai Liu^d

^a College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350108, China

^b Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA

^c Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

^d Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China

ARTICLE INFO

Article history: Received 30 January 2015 Received in revised form 18 April 2016 Accepted 21 April 2016 Available online 7 July 2016

Keywords: Eigenvalue Algebraic connectivity Strength Arboricity Fractional arboricity

ABSTRACT

We investigate the relationship between the eigenvalues of a graph *G* and fractional spanning tree packing and coverings of *G*. Let $\omega(G)$ denote the number of components of a graph *G*. The strength $\eta(G)$ and the fractional arboricity $\gamma(G)$ are defined by

$$\eta(G) = \min \frac{|X|}{\omega(G - X) - \omega(G)}, \quad \text{and} \quad \gamma(G) = \max \frac{|E(H)|}{|V(H)| - 1}$$

where the optima are taken over all edge subsets *X* whenever the denominator is non-zero. The well known spanning tree packing theorem by Nash-Williams and Tutte indicates that a graph *G* has *k* edge-disjoint spanning tree if and only if $\eta(G) \ge k$; and Nash-Williams proved that a graph *G* can be covered by at most *k* forests if and only if $\gamma(G) \le k$. Let $\lambda_i(G)$ ($\mu_i(G)$, $q_i(G)$, respectively) denote the *i*th largest adjacency (Laplacian, signless Laplacian, respectively) eigenvalue of *G*. In this paper, we prove the following.

(1) Let G be a graph with $\delta \ge 2s/t$. Then $\eta(G) \ge s/t$ if $\mu_{n-1}(G) > \frac{2s-1}{t(\delta+1)}$, or if $\lambda_2(G) < \delta - \frac{2s-1}{2s-1}$, or if $a_2(G) < 2\delta - \frac{2s-1}{2s-1}$.

 $\lambda_{2}(G) < \delta - \frac{2s-1}{t(\delta+1)}, \text{ or if } q_{2}(G) < 2\delta - \frac{2s-1}{t(\delta+1)}.$ (2) Suppose that *G* is a graph with nonincreasing degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ and $n \ge \lfloor \frac{2s}{t} \rfloor + 1.$ Let $\beta = \frac{2s}{t} - \frac{1}{\lfloor \frac{2s}{t} \rfloor + 1} \sum_{i=1}^{\lfloor \frac{2s}{t} \rfloor + 1} d_{i}.$ Then $\gamma(G) \le s/t$, if $\beta \ge 1$, or if $0 < \beta < 1$, $n > \lfloor 2s/t \rfloor + 1 + \frac{2s-2}{t\beta}$ and

$$\mu_{n-1}(G) > \frac{n(2s/t-2/t-\beta(\lfloor 2s/t\rfloor+1))}{(\lfloor 2s/t\rfloor+1)(n-\lfloor 2s/t\rfloor-1)}.$$

Our result proves a stronger version of a conjecture by Cioabă and Wong on the relationship between eigenvalues and spanning tree packing, and sharpens former results in this area. © 2016 Elsevier B.V. All rights reserved.

* Corresponding author. E-mail address: xgu@westga.edu (X. Gu).

http://dx.doi.org/10.1016/j.dam.2016.04.027 0166-218X/© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider finite undirected simple graphs. Throughout the paper, k, s, t denote positive integers and G denotes a simple graph. We follow the notations of Bondy and Murty [1], unless otherwise defined. However, we use $\omega(G)$ to denote the number of components of G, which differs from [1].

Let *G* be an undirected simple graph with vertex set $\{v_1, v_2, ..., v_n\}$. The **adjacency matrix** of *G* is an *n* by *n* matrix *A*(*G*) with entry $a_{ij} = 1$ if there is an edge between v_i and v_j and $a_{ij} = 0$ otherwise, for $1 \le i, j \le n$. We use $\lambda_i(G)$ to denote the *i*th largest eigenvalue of *G*; when the graph *G* is understood from the context, we often use λ_i for $\lambda_i(G)$. With these notations, we always have $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Let $D(G) = (d_{ij})$ be the **degree matrix** of *G*, that is, the *n* by *n* diagonal matrix with d_{ii} being the degree of vertex v_i in *G* for $1 \le i \le n$. The matrices L(G) = D(G) - A(G) and Q(G) = D(G) + A(G) are the **Laplacian matrix** and the **signless Laplacian matrix** of *G*, respectively. We use $\mu_i(G)$ and $q_i(G)$ to denote the *i*th largest eigenvalue of L(G), $\mu_{n-1}(G)$, is known as the **algebraic connectivity** of *G*.

For a connected graph *G*, the **spanning tree packing number**, denoted by $\tau(G)$, is the maximum number of edge-disjoint spanning trees in *G*. The **arboricity** a(G) is the minimum number of edge-disjoint forests whose union equals E(G). Fundamental theorems characterizing graphs *G* with $\tau(G) \ge k$ and with $a(G) \le k$ have been obtained by Nash-Williams and Tutte, and by Nash-Williams, respectively.

Theorem 1.1. Let *G* be a connected graph with $E(G) \neq \emptyset$. Each of the following holds.

(i) (Nash-Williams [12] and Tutte [15]). $\tau(G) \ge k$ if and only if for any $X \subseteq E(G)$, $|X| \ge k(\omega(G - X) - 1)$.

(ii) (Nash-Williams [13]). $a(G) \le k$ if and only if for any subgraph H of G, $|E(H)| \le k(|V(H)| - 1)$.

Following the terminology in [3,14], we define the **strength** $\eta(G)$ and the **fractional arboricity** $\gamma(G)$ of a graph *G* respectively by

$$\eta(G) = \min \frac{|X|}{\omega(G-X) - \omega(G)}, \text{ and } \gamma(G) = \max \frac{|E(H)|}{|V(H)| - 1},$$

where the optima are taken over all edge subsets *X* whenever the denominator is non-zero. Theorem 1.1 indicates that for a connected graph *G*, $\tau(G) \ge k$ if and only if $\eta(G) \ge k$, and, $a(G) \le k$ if and only if $\gamma(G) \le k$. Since $\eta(G)$ and $\gamma(G)$ are possibly fractional, we have $\tau(G) = \lfloor \eta(G) \rfloor$ and $a(G) = \lceil \gamma(G) \rceil$. Thus, $\eta(G)$ is also referred to as the **fractional spanning tree packing number** of *G*.

Cioabă and Wong [4] investigated the relationship between the second largest adjacency eigenvalue and τ (*G*) for a regular graph *G*, and made Conjecture 1.1(i). Utilizing Theorem 1.1, Cioabă and Wong proved Conjecture 1.1(i) for $k \in \{2, 3\}$.

Conjecture 1.1(i) was then extended to Conjecture 1.1(ii) for any simple graph *G* (not necessarily regular). See [5–7,9,11] for the conjecture and some partial results. Recently, Conjecture 1.1 was settled in [10].

Conjecture 1.1. (i) ([4]) Let k and d be two integers with $d \ge 2k \ge 4$. If G is a d-regular graph with $\lambda_2(G) < d - \frac{2k-1}{d+1}$, then $\tau(G) \ge k$.

(ii) ([5,7,9,11]) Let k be an integer with $k \ge 2$ and G be a graph with minimum degree $\delta \ge 2k$. If $\lambda_2(G) < \delta - \frac{2k-1}{\delta+1}$, then $\tau(G) \ge k$.

Motivated by the above conjecture and the corresponding results, we investigate the relationship between $\eta(G)$ and eigenvalues of *G*. We also consider the relationship between the fractional arboricity $\gamma(G)$ and algebraic connectivity $\mu_{n-1}(G)$. Theorems 1.2 and 1.3 are the main results.

Theorem 1.2. Let *G* be a graph with $\delta \ge 2s/t$. (i) If $\mu_{n-1}(G) > \frac{2s-1}{t(\delta+1)}$, then $\eta(G) \ge s/t$. (ii) If $\lambda_2(G) < \delta - \frac{2s-1}{t(\delta+1)}$, then $\eta(G) \ge s/t$. (iii) If $q_2(G) < 2\delta - \frac{2s-1}{t(\delta+1)}$, then $\eta(G) \ge s/t$.

Remark 1. Theorem 1.2 indicates that, for a graph *G* with $\delta \ge 2k$, if $\mu_{n-1}(G) > \frac{2k-1}{\delta+1}$, or $\lambda_2(G) < \delta - \frac{2k-1}{\delta+1}$, or $q_2(G) < 2\delta - \frac{2k-1}{\delta+1}$, then $\tau(G) \ge k$. This was proved in [10] and settled Conjecture 1.1.

Theorem 1.3. Suppose that *G* is a graph with nonincreasing degree sequence d_1, d_2, \ldots, d_n and $n \geq \lfloor \frac{2s}{t} \rfloor + 1$. Let $\beta = \frac{2s}{t} - \frac{1}{\lfloor \frac{2s}{t} \rfloor + 1} \sum_{i=1}^{\lfloor \frac{2s}{t} \rfloor + 1} d_i$.

Download English Version:

https://daneshyari.com/en/article/4949977

Download Persian Version:

https://daneshyari.com/article/4949977

Daneshyari.com