Note

Fractional spanning tree packing, forest covering and eigenvalues

Yanmei Hong ${ }^{\mathrm{a}}$, Xiaofeng Gu ${ }^{\mathrm{b}, *}$, Hong-Jian Lai ${ }^{\mathrm{c}}$, Qinghai Liu ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350108, China
${ }^{\mathrm{b}}$ Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\text {d }}$ Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China

A RTICLE INFO

Article history:

Received 30 January 2015
Received in revised form 18 April 2016
Accepted 21 April 2016
Available online 7 July 2016

Keywords:

Eigenvalue
Algebraic connectivity
Strength
Arboricity
Fractional arboricity

A B S TRACT

We investigate the relationship between the eigenvalues of a graph G and fractional spanning tree packing and coverings of G. Let $\omega(G)$ denote the number of components of a graph G. The strength $\eta(G)$ and the fractional arboricity $\gamma(G)$ are defined by

$$
\eta(G)=\min \frac{|X|}{\omega(G-X)-\omega(G)}, \quad \text { and } \quad \gamma(G)=\max \frac{|E(H)|}{|V(H)|-1},
$$

where the optima are taken over all edge subsets X whenever the denominator is non-zero. The well known spanning tree packing theorem by Nash-Williams and Tutte indicates that a graph G has k edge-disjoint spanning tree if and only if $\eta(G) \geq k$; and Nash-Williams proved that a graph G can be covered by at most k forests if and only if $\gamma(G) \leq k$. Let $\lambda_{i}(G)$ ($\mu_{i}(G), q_{i}(G)$, respectively) denote the i th largest adjacency (Laplacian, signless Laplacian, respectively) eigenvalue of G. In this paper, we prove the following.
(1) Let G be a graph with $\delta \geq 2 s / t$. Then $\eta(G) \geq s / t$ if $\mu_{n-1}(G)>\frac{2 s-1}{t(\delta+1)}$, or if $\lambda_{2}(G)<\delta-\frac{2 s-1}{t(\delta+1)}$, or if $q_{2}(G)<2 \delta-\frac{2 s-1}{t(\delta+1)}$.
(2) Suppose that G is a graph with nonincreasing degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ and $n \geq\left\lfloor\frac{2 s}{t}\right\rfloor+1$. Let $\beta=\frac{2 s}{t}-\frac{1}{\left\lfloor\frac{2 s}{t}\right\rfloor+1} \sum_{i=1}^{\left\lfloor\frac{2 s}{t}\right\rfloor+1} d_{i}$. Then $\gamma(G) \leq s / t$, if $\beta \geq 1$, or if $0<\beta<1$, $n>\lfloor 2 s / t\rfloor+1+\frac{2 s-2}{t \beta}$ and

$$
\mu_{n-1}(G)>\frac{n(2 s / t-2 / t-\beta(\lfloor 2 s / t\rfloor+1))}{(\lfloor 2 s / t\rfloor+1)(n-\lfloor 2 s / t\rfloor-1)} .
$$

Our result proves a stronger version of a conjecture by Cioabă and Wong on the relationship between eigenvalues and spanning tree packing, and sharpens former results in this area.
© 2016 Elsevier B.V. All rights reserved.

[^0]
1. Introduction

In this paper, we consider finite undirected simple graphs. Throughout the paper, k, s, t denote positive integers and G denotes a simple graph. We follow the notations of Bondy and Murty [1], unless otherwise defined. However, we use $\omega(G)$ to denote the number of components of G, which differs from [1].

Let G be an undirected simple graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix of G is an n by n matrix $A(G)$ with entry $a_{i j}=1$ if there is an edge between v_{i} and v_{j} and $a_{i j}=0$ otherwise, for $1 \leq i, j \leq n$. We use $\lambda_{i}(G)$ to denote the i th largest eigenvalue of G; when the graph G is understood from the context, we often use λ_{i} for $\lambda_{i}(G)$. With these notations, we always have $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Let $D(G)=\left(d_{i j}\right)$ be the degree matrix of G, that is, the n by n diagonal matrix with $d_{i i}$ being the degree of vertex v_{i} in G for $1 \leq i \leq n$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are the Laplacian matrix and the signless Laplacian matrix of G, respectively. We use $\mu_{i}(G)$ and $q_{i}(G)$ to denote the i th largest eigenvalue of $L(G)$ and $Q(G)$, respectively. It is not difficult to see that $\mu_{n}(G)=0$. The second smallest eigenvalue of $L(G), \mu_{n-1}(G)$, is known as the algebraic connectivity of G.

For a connected graph G, the spanning tree packing number, denoted by $\tau(G)$, is the maximum number of edge-disjoint spanning trees in G. The arboricity $a(G)$ is the minimum number of edge-disjoint forests whose union equals $E(G)$. Fundamental theorems characterizing graphs G with $\tau(G) \geq k$ and with $a(G) \leq k$ have been obtained by Nash-Williams and Tutte, and by Nash-Williams, respectively.

Theorem 1.1. Let G be a connected graph with $E(G) \neq \emptyset$. Each of the following holds.
(i) (Nash-Williams [12] and Tutte [15]). $\tau(G) \geq k$ if and only if for any $X \subseteq E(G),|X| \geq k(\omega(G-X)-1)$.
(ii) (Nash-Williams [13]). $a(G) \leq k$ if and only if for any subgraph H of $G,|E(H)| \leq k(|V(H)|-1)$.

Following the terminology in $[3,14]$, we define the strength $\eta(G)$ and the fractional arboricity $\gamma(G)$ of a graph G respectively by

$$
\eta(G)=\min \frac{|X|}{\omega(G-X)-\omega(G)}, \quad \text { and } \quad \gamma(G)=\max \frac{|E(H)|}{|V(H)|-1},
$$

where the optima are taken over all edge subsets X whenever the denominator is non-zero. Theorem 1.1 indicates that for a connected graph $G, \tau(G) \geq k$ if and only if $\eta(G) \geq k$, and, $a(G) \leq k$ if and only if $\gamma(G) \leq k$. Since $\eta(G)$ and $\gamma(G)$ are possibly fractional, we have $\tau(G)=\lfloor\eta(G)\rfloor$ and $a(G)=\lceil\gamma(G)\rceil$. Thus, $\eta(G)$ is also referred to as the fractional spanning tree packing number of G.

Cioabă and Wong [4] investigated the relationship between the second largest adjacency eigenvalue and $\tau(G)$ for a regular graph G, and made Conjecture 1.1(i). Utilizing Theorem 1.1, Cioabă and Wong proved Conjecture 1.1(i) for $k \in\{2,3\}$.

Conjecture 1.1(i) was then extended to Conjecture 1.1(ii) for any simple graph G (not necessarily regular). See [5-7,9,11] for the conjecture and some partial results. Recently, Conjecture 1.1 was settled in [10].

Conjecture 1.1. (i) ([4]) Let k and d be two integers with $d \geq 2 k \geq 4$. If G is a d-regular graph with $\lambda_{2}(G)<d-\frac{2 k-1}{d+1}$, then $\tau(G) \geq k$.
(ii) $([5,7,9,11])$ Let k be an integer with $k \geq 2$ and G be a graph with minimum degree $\delta \geq 2 k$. If $\lambda_{2}(G)<\delta-\frac{2 k-1}{\delta+1}$, then $\tau(G) \geq k$.

Motivated by the above conjecture and the corresponding results, we investigate the relationship between $\eta(G)$ and eigenvalues of G. We also consider the relationship between the fractional arboricity $\gamma(G)$ and algebraic connectivity $\mu_{n-1}(G)$. Theorems 1.2 and 1.3 are the main results.

Theorem 1.2. Let G be a graph with $\delta \geq 2 s / t$.
(i) If $\mu_{n-1}(G)>\frac{2 s-1}{t(\delta+1)}$, then $\eta(G) \geq s / t$.
(ii) If $\lambda_{2}(G)<\delta-\frac{2 s-1}{t(\delta+1)}$, then $\eta(G) \geq s / t$.
(iii) If $q_{2}(G)<2 \delta-\frac{2 s-1}{t(\delta+1)}$, then $\eta(G) \geq s / t$.

Remark 1. Theorem 1.2 indicates that, for a graph G with $\delta \geq 2 k$, if $\mu_{n-1}(G)>\frac{2 k-1}{\delta+1}$, or $\lambda_{2}(G)<\delta-\frac{2 k-1}{\delta+1}$, or $q_{2}(G)<2 \delta-\frac{2 k-1}{\delta+1}$, then $\tau(G) \geq k$. This was proved in [10] and settled Conjecture 1.1.

Theorem 1.3. Suppose that G is a graph with nonincreasing degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ and $n \geq\left\lfloor\frac{2 s}{t}\right\rfloor+1$. Let $\beta=$ $\frac{2 s}{t}-\frac{1}{\left\lfloor\frac{2 s}{t}\right\rfloor+1} \sum_{i=1}^{\left\lfloor\frac{2 s}{t}\right\rfloor+1} d_{i}$.

https://daneshyari.com/en/article/4949977

Download Persian Version:
https://daneshyari.com/article/4949977

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: xgu@westga.edu (X. Gu).

