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a b s t r a c t

Amos et al. (2015) introduced the notion of the k-forcing number of graph for a positive
integer k as the generalization of the zero forcing number of a graph. The k-forcing number
of a simple graph G, denoted by Fk(G), is the minimum number of vertices that need
to be initially colored so that all vertices eventually become colored during the discrete
dynamical process defined by the following rule. Starting from an initial set of colored
vertices and stopping when all vertices are colored: if a colored vertex has at most k non-
colored neighbors, then each of its non-colored neighbors become colored. Particularly,
with a close connection to the maximum nullity of a graph, F1(G) is widely studied under
the name of the zero forcing number, denoted by Z(G). Among other things, Amos et al.
proved that for a connected graph G of order n with ∆ = ∆(G) ≥ 2, Z(G) ≤

(∆−2)n+2
∆−1 ,

and this inequality is sharp. Moreover, they conjectured that Z(G) =
(∆−2)n+2

∆−1 if and only
if G = Cn, G = K∆+1 or G = K∆,∆. In this note, we show the above conjecture is true.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider undirected finite simple connected graphs only. For notation and terminology not defined here, we refer
to [6]. For a graph G = (V (G), E(G)), |V (G)| and |E(G)| are its order and size, respectively. For a vertex v ∈ V (G), the
neighborhood N(v) of v is defined as the set of vertices adjacent to v. The degree dG(v) of v is the number of edges incident
with v in G. The minimum and maximum degrees of a vertex in a graph G are denoted δ(G) and ∆(G), respectively. Let
S ⊆ V (G). Denote the set of the edges between S and S by E(S, S), and let e(S, S) = |E(S, S)|. The subgraph induced by S,
denoted by G[S], is the graph with vertex set S, in which two vertices x and y are adjacent if and only if they are adjacent
in G. As usual, for a positive integer n ≥ 1, Kn and Kn,n denote respectively the complete graph of order n and the complete
bipartite graph with n vertices in its each part; Cm denote the cycle of orderm for an integerm ≥ 3.

Next, we follow the definition by Amos et al. [2]. Let k be a positive integer and G a graph. A set S ⊆ V (G) is a k-forcing set
if, when its vertices are initially colored – while the remaining vertices are initially non-colored – and the graph is subjected
to the following color change rule, all of vertices in G will eventually become colored. A colored vertex with at most k non-
colored neighbors will cause each the non-colored neighbor to become colored. The k-forcing number of G, denoted by Fk(G),
is the cardinality of the smallest k-forcing set. If a vertex u causes a vertex v to change colors during the k-forcing process,
we say that u k-forces v (in particular, u forces v when k = 1).

This concept generalizes a widely studied notion of the zero forcing number Z(G) of a graph G. Indeed, F1(G) = Z(G).
Barioli et al. [3] and Burgarth et al. [7] introduced independently the concepts of zero forcing set and zero forcing number of
a graph. In [3], it is introduced to bound the maximum nullity of a graph. Namely, for a graph G whose vertices are labeled
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from 1 to n, M(G) denotes the maximum nullity over all symmetric real valued matrices where, for i ≠ j, the ijth entry in
nonzero if and only if ij is an edge in G. Then, M(G) ≤ Z(G) for any graph G. For the more results on the relation between
the relation of the maximum nullity and the zero forcing number of a graph, we refer to [4,5,9–15]. In [7], the zero forcing
set of a graph has been used in order to study the controllability of quantum systems. Aazami [1] proved the NP-hardness
of computing the zero forcing number of a graph, using a reduction from the Directed Hamiltonian Cycle problem.

Amos et al. [2] generalized the concept of zero forcing number of a graph to the k-forcing number of a graph for an integer
k ≥ 1 and proved that for a connected graph G of order nwith∆ = ∆(G) ≥ 2, Z(G) ≤

(∆−2)n+2
∆−1 , and this inequality is sharp.

Moreover, they posed the following conjecture.

Conjecture 1.1 (Amos et al. [2]). Let G be a connected graph with ∆ ≥ 2. Then

Z(G) =
(∆ − 2)n + 2

∆ − 1
,

if and only if G = Cn, G = K∆+1 or G = K∆,∆.

In this note, we confirm the validity of the above conjecture.

2. Some results on Z(G)

A k-dominating set of a graph G is a set D of vertices such that every vertex not in D is adjacent to at least k vertices in D.

Lemma 2.1 (Lemma 4.1 in [2]). Let k be a positive integer and G = (V , E) be a k-connected graph with n > k. If S is a smallest
k-forcing set such that the subgraph induced by V \ S is connected, then V \ S is a connected k-dominating set of G.

Theorem 2.2 (Theorem 4.4 in [2]). Let k be positive integer and let G = (V , E) be a k-connected graph with n > k vertices and
∆ ≥ 2. Then

Fk(G) ≤
(∆ − 2)n + 2

∆ + k − 2
,

and this inequality is sharp.

For the special case of k = 1, the above bound was improved by Caro and Pepper as follows.

Theorem 2.3 (Corollary 3.1 in [8]). Let G be a connected graph of order n with maximum degree ∆ and minimum degree δ. Then

Z(G) = F1(G) ≤
(∆ − 2)n − (∆ − δ) + 2

∆ − 1
.

Lemma 2.4. Let T be a tree with exactly k leaves. If S is a set of k − 1 leaves of T , then S is a zero forcing set of T .

Proof. The proof is by induction on k. If k = 2, T is path, and the result clearly holds. Now assume that k ≥ 3. Take a vertex
u ∈ S. Let P be amaximal path of T containing u such that every vertex v on P has degree atmost two in T . Let T ′

= T −V (P).
Note that T ′ has exactly k−1 leaves. By the induction hypothesis, S ′

= S \{u} is a zero forcing set of T ′. So, S is a zero forcing
set of T . �

3. Main result

Theorem 3.1. Let G be a connected graph with ∆ ≥ 2. Then

Z(G) =
(∆ − 2)n + 2

∆ − 1
,

if and only if G = Cn, G = K∆+1 or G = K∆,∆.

Proof. It is clear that Z(Cn) = 2 for any n ≥ 3, Z(K∆+1) = ∆, Z(K∆,∆) = 2∆ − 2. Hence, the sufficiency of theorem holds
trivially.

To show thenecessity,we assume thatG is a connected graphof ordernwith∆ ≥ 2 and Z(G) =
(∆−2)n+2

∆−1 . By Theorem2.3,
G is a ∆-regular graph. If ∆ = 2, then G = Cn. In what follows, we assume that ∆ ≥ 3.

Let S be a smallest zero forcing set of G such that G[S] is connected, where S = V \ S. Thus,

|S| ≥ Z(G) =
(∆ − 2)n + 2

∆ − 1
. (1)
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