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a b s t r a c t

An indeterminate string x = x[1..n] on an alphabet Σ is a sequence of nonempty subsets
of Σ; x is said to be regular if every subset is of size one. A proper substring u of regular
x is said to be a cover of x iff for every i ∈ 1..n, an occurrence of u in x includes x[i]. The
cover array γ = γ[1..n] of x is an integer array such that γ[i] is the longest cover of x[1..i].
Fifteen years ago a complex, though nevertheless linear-time, algorithm was proposed to
compute the cover array of regular x based on prior computation of the border array of x. In
this paper we first describe a linear-time algorithm to compute the cover array of regular
x based on the prefix table of x. We then extend this result to indeterminate strings.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The idea of a quasiperiod or cover of a string x was introduced almost a quarter-century ago by Apostolico & Ehren-
feucht [4]: a proper substring u of x such that every position in x lies within an occurrence of u. Thus, for example, u = aba
is a cover of x = ababaababa. In [5] a linear-time algorithm was described to compute the shortest cover of x; this contri-
bution was followed by linear-time algorithms to compute
• the shortest cover of every prefix of x [9];
• all the covers of x [17,18];
• all the covers of every prefix of x [16].

A border of a string x is a possibly empty proper prefix of x that is also a suffix of x. (Thus a cover of x is necessarily also a
border of x.) In the border array β = β[1..n] of the string x = x[1..n], β[i] is the length of the longest border of x[1..i]. Since
for β[i] ≠ 0, β[β[i]] is the length of a border of x as well as the length of the longest border of x[1..β[i]] [2,20], it follows
that β provides all the borders of every prefix of x. For example:

1 2 3 4 5 6 7 8 9 10

x = a b a b a b a a b a
β = 0 0 1 2 3 4 5 1 2 3

(1)
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As shown in [16], the cover array γ has a similar cascading property, giving the lengths of all the covers of every prefix
of x in a compact form:

1 2 3 4 5 6 7 8 9 10

γ = 0 0 0 2 3 4 5 0 0 3

Here x[1..7] has covers u1 = x[1..5] = ababa and u2 = x[1..3] = aba, while the entire string x has cover u2. The main
result of [16] is an algorithm that computes γ = γ [1..n] from β = β[1..n] in Θ(n) time, while making no reference to the
underlying string x.

The results outlined above all apply to a regular string — that is, a string x such that each entry x[i] is constrained to be a
one-element subset of a given setΣ called the alphabet. In this paper we show how to extend these ideas and algorithms to
an indeterminate string x— that is, such that each x[i] can be any nonempty subset of Σ . Observe that every regular string
is indeterminate.

The idea of an indeterminate stringwas first introduced in [12], then studied further in the 1980s as a ‘‘generalized string’’
[1]. Over the last 15 years Blanchet-Sadri has written numerous papers on the properties of ‘‘strings with holes’’ (each x[i] is
either a one-element subset ofΣ orΣ itself), togetherwith amonograph on the subject [8];while other authors have studied
indeterminate strings in their full generality, together with related algorithms [6,19,14,15,21–23,10]. In the specific context
of this paper, Voráček & Melichar [24] have done pioneering work on the computation of covers and related structures in
generalized strings using finite automata.

For indeterminate strings, equality of letters is replaced by the idea of a ‘‘match’’ [14]: x[i] matches x[j] (written
x[i] ≈ x[j]) if and only if x[i] ∩ x[j] ≠ ∅, while x ≈ y if and only if |x| = |y| and corresponding positions in x and y
all match. It is important to note that matching is nontransitive: b ≈ {b, c} ≈ c , but b ≉ c.

It is [10] that provides the point of departure for our contribution, as we now explain. The prefix table π = π[1..n] of
x[1..n] is an integer array such that π[1] = n and, for every i ∈ 2..n, π[i] is the length of the longest substring occurring at
position i of x that matches a prefix of x. Thus, for our example (1):

1 2 3 4 5 6 7 8 9 10

x = a b a b a b a a b a
π = 10 0 3 0 3 0 1 3 0 1

It turns out [7] that the prefix table and the border array are ‘‘equivalent’’ for regular strings; that is, each can be computed
from x in linear time, and each can be computed from the other, without reference to x, also in linear time. However, for
indeterminate strings, this is not true: the prefix table continues to determine all the borders of every prefix of x, while the
border array, due to the intransitivity of matching, is no longer reliable in identifying borders shorter than the longest one.
Consider, for example:

1 2 3

x = a {a, b} b
β = 0 1 2

Here x does not have a border of length β[β[3]] = 1; on the other hand, π = 320 correctly identifies all the borders of
every prefix of x.

Moreover, it was shown in [10] that every feasible array – that is, every array y = y[1..n] such that y[1] = n and for every
i ∈ 2..n, y[i] ∈ 0..n− i+1 – is a prefix table of some (indeterminate) string. Thus there exists amany-many correspondence
between all possible prefix tables and all possible indeterminate strings. Furthermore, [21] describes an algorithm to
compute the prefix table of any indeterminate string, while [3] gives an algorithm to compute a lexicographically least
indeterminate string corresponding to a given prefix table.

At this point let us discuss our motivation more precisely. First, realize that to exploit the fullest functionality of a border
array of an indeterminate string we need to resort to the extended definition of the border array which in fact requires
quadratic space [14,19,6]: unlike the border array of a regular string, which is a simple array of integers, the border array of
an indeterminate string is an array of lists of integers. Here at each position, the list gives all possible borders for that prefix.
On the other hand, the prefix array, even for the indeterminate string, remains a simple one-dimensional array, just as for
a regular string. It thus becomes of interest to make use of the prefix table rather than the border array whenever possible,
in order to extend the scope of computations to indeterminate strings.

In Section 2 of this paper, we describe a linear-time algorithm to compute the cover array γ of a regular string x directly
from its prefix table π. Then, Section 3 describes a limited extension of this algorithm to indeterminate strings. Finally,
Section 4 outlines future research directions, especially making use of prefix tables to extend the utility and applicability of
other data structures to indeterminate strings.

2. Prefix-to-cover for a regular string

In this sectionwe describe our basicΘ(n)-time Algorithm PCR to compute the cover array γ = γ [1..n] of a regular string
x = x[1..n] directly from its prefix table π = π[1..n]. In fact, as noted in the Introduction, γ actually provides all the covers
of every prefix of x. Central to our algorithm are the following definitions:
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