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a b s t r a c t

Motivated by the recent validation of the d-step approach for the number of runs problem,
we investigate the largest possible number σd(n) of distinct primitively rooted squares
over all strings of length n with exactly d distinct symbols. New properties of σd(n) are
presented, and the notion of s-cover is introduced with an emphasis on the recursive
computational determination of σd(n). In particular, we were able to determine all values
of σ2(n) for n ≤ 70, σ3(n) for n ≤ 45 and σ4(n) for n ≤ 38. These computations reveal
the unexpected existence of pairs (d, n) satisfying σd+1(n+ 2) − σd(n) > 1 such as (2, 33)
and (2, 34), and of three consecutive equal values: σ2(31) = σ2(32) = σ2(33). Noticeably,
we show that among all strings of length 33, the maximum number of distinct primitively
rooted squares cannot be achieved by a non-ternary string.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The notion of an r-coverwas introduced by Baker, Deza, and Franek [1] as ameans to represent the distribution of the runs
in a string and thus describe the structure of the run-maximal strings. Ignoring the number of distinct symbols d in the string,
a key assertion states that essentially any run-maximal string has an r-cover. This fact was used in [2] to compute values
of the maximum number of runs for strings of previously intractable lengths, and to provide computational substantiation
for the d-step approach to the problem of the maximum number of runs proposed by Deza and Franek [4]. Recently, Bannai
et al. [3] proved that the number of runs in a string is at most its length minus 3 using the maximal Lyndon roots of runs.
Considering the largest possible number ρd(n) of runs over all strings of length n with exactly d distinct symbols, Deza and
Franek [4] conjectured that ρd(n) ≤ n− d and ρd(n) ≤ n− d− 1 for n ≥ 2d+ 1 which was proven by Bannai et al. [3]. The
bound was slightly improved to ρd(n) ≤ n − d − 2 for n ≥ 2d + 5 by Deza and Franek [5] and, consequently, the number
of runs in a string of length at least 9 is at most its length minus 4. Fischer, Holub, I, and Lewenstein further exploited the
maximal Lyndon root approach and strengthened the upper for the maximum number of runs for binary strings in [9].

In this paper, we present a method of computing square-maximal strings similar to the one used for runs in [2] and
similarly based on the d-step approach. We introduce the notion of s-cover which is used to speed up computations of the
maximum number of distinct primitively rooted squares allowing computing σd(n) for previously intractable values of d
and n. The paper is organized as follows: Section 2 gives the basic facts and notation, Section 3 discusses the computational
approach to the number of distinct primitively rooted squares, Section 4 introduces a heuristic for speeding up the
computation, Section 5 discusses how s-covered string can be generated, Section 6 discusses how to compute σd(n) values,
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Table 1
(d, n − d) table for σd(n) with 2 ≤ d ≤ 20 and 2 ≤ n − d ≤ 20 where the main diagonal corresponding to n = 2d is shown in bold.

n − d
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d

2 2 2 3 3 4 5 6 7 7 8 9 10 11 12 12 13 13 14 15
3 2 3 3 4 4 5 6 7 8 8 9 10 11 12 13 13 14 14 15
4 2 3 4 4 5 5 6 7 8 9 9 10 11 12 13 14 14 15 15
5 2 3 4 5 5 6 6 7 8 9 10 10 11 12 13 14 15 15 16
6 2 3 4 5 6 6 7 7 8 9 10 11 11 12 13 14 15 16 16
7 2 3 4 5 6 7 7 8 8 9 10 11 12 12 13 14 15 16 17
8 2 3 4 5 6 7 8 8 9 9 10 11 12 13 13 14 15 16 17
9 2 3 4 5 6 7 8 9 9 10 10 11 12 13 14 14 15 16 17

10 2 3 4 5 6 7 8 9 10 10 11 11 12 13 14 15 15 16 17
11 2 3 4 5 6 7 8 9 10 11 11 12 12 13 14 15 16 16 17
12 2 3 4 5 6 7 8 9 10 11 12 12 13 13 14 15 16 17 ?
13 2 3 4 5 6 7 8 9 10 11 12 13 13 14 14 15 16 17 18
14 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 15 16 17 18
15 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 16 17 18
16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 17 18
17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 18
18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19
19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19
20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Section 7 discusses how to compute σd(2d) values. In Section 8 some additional theoretic properties of σd(n) not presented
in [6] are discussed. The computational results are summarized in Section 9.

2. Notations

We encode a square as a triple (s, e, p) where s is the starting position of the square, e is the ending position of the
square, and p is its period. Note that e = s + 2p − 1. The join x[i1.. ik] ∨ x[j1.. jm] of two substrings of a string x = x[1.. n]
is defined if i1 ≤ j1 ≤ ik + 1 and then x[i1.. ik] ∨ x[j1.. jm] = x[i1.. max{ik, jm}], or if j1 ≤ i1 ≤ jm + 1 and then
x[i1.. ik] ∨ x[j1.. jm] = x[j1..max{ik, jm}]. In other words, the join is defined when the two substrings either are adjacent
or overlapping. The join S1 ∨ S2 of two squares of x encoded as S1 = (s1, e1, p1) and S2 = (s2, e2, p2) is defined as the join
x[s1.. e1] ∨ x[s2.. e2]. The alphabet of x is denoted by A(x), (d, n)-string refers to a string of length n with exactly d distinct
symbols, s(x) denotes the number of distinct primitively rooted squares in a string x, and σd(n) refers to the maximum
number of distinct primitively rooted squares over all (d, n)-strings. A singleton is a symbol which occurs exactly once in
the string under consideration. For the empty string ε, we set s(ε) = 0 and σd(0) = 0. In the d-step approach the main
tool is the (d, n − d) table of the σd(n) values where the row index represents d while the column index represents n − d
rather than the usual n. A 20×20 fragment of the table with computed values is shown in Table 1, see [7] for a table with all
currently computed values. An important aspect of the d-step approach is the fact that the bounding of σd(n) is determined
by the bounding on the main diagonal, i.e. σd(2d). More precisely, σd(n) ≤ n− d for any n ≥ d ≥ 2 if and only if σd(2d) = d
for any d ≥ 2. Additional properties σd(n) are discussed and used in the following sections, see [4,6] for details.

3. Computational approach to distinct primitively rooted squares

In the computational framework for determining σd(n) we will be discussing later, we first compute a lower bound of
σd(n) denoted as σ−

d (n). It is enough to consider (d, n)-strings x that could achieve s(x) > σ−

d (n) for determining σd(n), thus
significantly reducing the search space. The purpose of this section is to introduce the necessary conditions that guarantee
that for such an x, s(x) > σ−

d (n) for a given σ−

d (n). The necessary conditions are the existence of an s-cover and a sufficient
density of the string, see Lemmas 5, 9 and 10. The s-cover is guaranteed through generation, while the density is verified
incrementally during the generation at the earliest possible stages. Note that the notion of s-cover, though similar to r-cover
for runs [1,2], is slightly different.

Definition 1. An s-cover of a string x = x[1.. n] is a sequence of primitively rooted squares {Si = (si, ei, pi) | 1 ≤ i ≤ m} so
that

(1) for any 1 ≤ i < m, si < si+1 ≤ ei + 1 and ei < ei+1, i.e. two consecutive squares are either adjacent or overlapping;
(2)


1≤i≤m

Si = x;

(3) for any occurrence of square S in x, there is 1 ≤ i ≤ m so that S is a substring of Si, denoted by S ⊆ Si.

Lemma 2. The s-cover of a string is unique.
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