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a b s t r a c t

Calculating the length ℓ of a longest common subsequence (LCS) of two strings, A of
length n and B of length m, is a classic research topic, with many known worst-case
oriented results. We present three algorithms for LCS length calculation with respectively
O(mn lg lg n/ lg2 n), O(mn/ lg2 n + r) and O(n + r) time complexity, where the second one
works for r = o(mn/(lg n lg lg n)), and the third one for r = Θ(mn/ lgk n), for a real
constant 1 ≤ k ≤ 3, and ℓ = O(n/(lgk−1 n(lg lg n)2)), where r is the number of matches
in the dynamic programming matrix. We also describe conditions for a given problem
sufficient to apply our techniques, with several concrete examples presented, namely the
edit distance, the longest common transposition-invariant subsequence (LCTS) and the
merged longest common subsequence (MerLCS) problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Measuring the similarity of sequences is an old research topic andmany actualmeasures are known in the stringmatching
literature. One classic example concerns the computation of a longest common subsequence (LCS) in which a subsequence
that is common to all sequences and has the maximal possible length is looked for. A simple dynamic programming (DP)
solution works in O(mn) time for two sequences of length n and m, respectively, but faster algorithms are known. The
LCS problem has many applications in diverse areas, like version control systems, comparison of DNA strings, structural
alignment of RNA sequences. Other related problems comprise calculating the edit (Levenshtein) distance between two
sequences, the longest common transposition-invariant subsequence, or LCS with constraints in which the longest common
subsequence of two sequences must contain, or exclude, some other sequence.

Let us focus first on the LCS problem, for two sequences A and B. It is defined as follows. Given two sequences,
A = a1 . . . an = A[1 . . . n] and B = b1 . . . bm = B[1 . . .m], over an alphabet Σ of size σ , find a longest subsequence
⟨ai1 , ai2 , . . . , aiℓ⟩ of A such that ai1 = bj1 , ai2 = bj2 , . . . , aiℓ = bjℓ , where 1 ≤ i1 < i2 < · · · < iℓ ≤ n and 1 ≤ j1 < j2 <
· · · < jℓ ≤ m. The found sequence may not be unique. W.l.o.g. we assume n ≥ m. To avoid uninteresting complications,
we also assume that m = Ω(lg2 n). Additionally, we assume that σ = O(m). The case of a general alphabet, however, can
be handled with standard means, i.e., we can initially map the sequences A and B onto an alphabet of size σ ′

= O(m), in
O(n lg σ ′) time, using a balanced binary search tree. We do not comprise this tentative preprocessing step in further com-
plexity considerations.

Often, a simplified version of the LCS problem is considered, when one is interested in telling only the length of a longest
common subsequence (LLCS).

In this paper we present three techniques for finding the LCS length, one (Section 3) based on tabulation and improving
the result of Bille and Farach-Colton [3] by a factor of lg lg n, second (Section 4) combining tabulation and sparse dynamic
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Table 1
Summary of main results for finding ℓ, the length of a longest common subsequence (LLCS) for two
sequences of lengthm and n, respectively, wherem ≤ n, over an integer alphabet of size σ . The number
of pairs of symbols shared by the two input sequences is denoted with r , 0 ≤ r ≤ mn. The number of
dominant matches is denoted with D, D ≤ r . All the algorithms require (at most) linear extra space in
addition to the space for storing the input sequences. ‘‘Stand. DP’’ and ‘‘Stand. 4R’’ are abbreviations for
the standard dynamic programming and the standard Four Russians (tabulation) algorithm.

Algorithm Time complexity Conditions Ref.

Stand. DP O(mn) – folklore
Stand. 4R O(n + mn/ lg2 n) σ = O(1) andm ≥ lg n [15]
Sparse DP O(nσ + D lg lg(min(D,mn/D))) – [8]
BFC O(n + mn(lg lg n)2/ lg2 n) m ≥ lg n lg lg n [3]
Our-1 O(mn lg lg n/ lg2 n) m ≥ lg2 n Section 3
Our-2 O(mn/ lg2 n + r) m ≥ lg2 n and

r = o(mn/(lg n lg lg n)) Section 4
Our-3 O(n + r) m ≥ lg2 n and

r = Θ(mn/ lgk n),
for real k ∈ [1, 3], and
ℓ = O(n/(lgk−1 n(lg lg n)2)) Section 5

programming and being slightly faster if the number of matches is appropriately limited, and the last (Section 5) improving
the previous result if also the LCS length is conveniently limited. In Section 6 we show the conditions necessary to apply
these algorithmic techniques. Some other, LCS-related, problems fulfill these conditions, so we immediately obtain new
results for these problems as well. The summary of our results for the LLCS-finding problem is presented in Table 1. The
other results listed there are briefly discussed in Sections 2 and 3.

Throughout the paper, we assume the word-RAM model of computation with machine word size w ≥ lg n. All used
logarithms are base 2.

A preliminary version of this article appeared in Proc. PSC 2014 [10].

2. Related work

A standard solution to the LCS problem is based on dynamic programming, and it is to fill amatrixM of size (n+1)×(m+

1), where n + 1 is the number of columns, m + 1 the number of rows, and each cell value depends on a pair of compared
symbols from A and B (that is, only if they match or not), and its (at most) three already computed neighbor cells. Each
computedM[i, j] cell, 1 ≤ i ≤ n, 1 ≤ j ≤ m, stores the value of LLCS(A[1 . . . i], B[1 . . . j]). A well-known property describes
adjacent cells:M(i, j) − M(i − 1, j) ∈ {0, 1} and M(i, j) − M(i, j − 1) ∈ {0, 1} for all valid i, j.

Despite almost 40 years of research, surprisingly little can be said about the worst-case time complexity of LCS. It is
known that in the very restrictive model of unconstrained alphabet and comparisons with equal/unequal answers only, the
lower bound is Ω(mn) [21], which is reached by a trivial DP algorithm. If the input alphabet is of constant size, the known
lower bound is simply Ω(n), but if total order between alphabet symbols exists and ≤-comparisons are allowed, then the
lower bound grows to Ω(n lg n) [11]. In other words, the gap between the proven lower bounds and the best worst-case
algorithm is huge.

A simple idea proposed in 1977 by Hunt and Szymanski [13] has become a milestone in LCS research, and the departure
point for theoretically better algorithms (e.g., [8]). The Hunt–Szymanski (HS) algorithm is essentially based on dynamic
programming, but it visits only the matching cells of the matrix, typically a small fraction of the entire set of cells. This kind
of selective scan over the DP matrix is called sparse dynamic programming (SDP). We note that the number of all matches in
M , denoted with the symbol r , can be found in O(n) time, and after this (negligible) preprocessing we can decide if the HS
approach is promising to given data. More precisely, the HS algorithm works in O(n + r lgm) or even O(n + r lg lgm) time.
Note that in the worst case, i.e., for r = Θ(mn), this complexity is however superquadratic.

The Hunt–Szymanski concept was an inspiration for a number of subsequent algorithms for LCS calculation, and the best
of them, the algorithm of Eppstein et al. [8], achieves O(D lg lg(min(D,mn/D)))worst-case time (plus O(nσ) preprocessing),
whereD ≤ r is the number of so-called dominantmatches inM (amatch (i, j) is called dominant iffM[i, j] = M[i−1, j]+1 =

M[i, j − 1] + 1). Note that this complexity is O(mn) for any value of D. A more recent algorithm, by Sakai [19], is an
improvement if the alphabet is very small (in particular, constant), as its time complexity isO(mσ +min(Dσ , ℓ(m−q))+n),
where ℓ = LLCS(A, B) and q = LLCS(A[1 . . .m], B).

A different approach is to divide the dynamicmatrix into small blocks, such that the number of essentially different blocks
is small enough to be precomputed before the main processing phase. In this way, the block may be processed in constant
time each, making use of a built lookup table (LUT). This ‘‘Four Russians’’ technique was first used to the LCS problem by
Masek and Paterson [15], for a constant alphabet, and refined by Bille and Farach-Colton [3] to work with an arbitrary
alphabet. The obtained time complexities were O(mn/ lg2 n) and O(mn(lg lg n)2/ lg2 n), respectively, with linear space.

A related, but different approach, is to use bit-parallelism to compute several cells of the dynamic programming matrix
at a time. There are a few such variants (see [14] and references therein), all of them working in O(⌈m/w⌉n) worst-case
time, after O(σ⌈m/w⌉ + m)-time and O(σm)-space preprocessing, where w is the machine word size.
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