
Controlling File Access with Types

Rakan Alsowail and Ian Mackie
Department of Informatics

University of Sussex
Falmer, UK

Abstract

Accidental misuse of shared files by authorised users is a predominant problem. This paper proposes a
well-known static analysis approach, namely a type system, to prevent such accidental misuse. We develop
a type system that intercepts commands issued by users in a file system and enforces policies on each file.
Commands issued by users to manipulate files will be subject to type checking by the type system. Type-
checked commands are then guaranteed to not violate policies of the files. The focus of this paper is on a
particular policy that allows owners of files (users who created files) to specify the number of times a file
can be read by limiting the number of times a file can be copied. Therefore, a file can be read as much as it
can be copied. If the file cannot be copied, then it can be read only once. This approach can be extended
to other properties.

Keywords: File sharing, security types, type checking

1 Introduction

File sharing has become an indispensable part of our daily lives. The shared files

might be sensitive, thus, their confidentially, integrity and availability should be

protected. Such protection might be against external threats that are initiated by

unauthorised users or insider threats that are initiated by authorised users. Our

main interest is with insider threats, in particular trusted authorised users who

might accidentally violate files policies. The most widely used technique to protect

shared files is access control such as Discretionary Access Control (DAC) [9,7] and

Role-based Access Control (RBAC) [14]. Although access control is useful to specify

who can access which information, it cannot protect sensitive information against

legitimate users. Access control is concerned with the release of information but

not its propagation. It provides a guarantee that information is released only to

authorised users. However, once information is released to authorised users, it might

be leaked maliciously or accidentally to unauthorised users without any further

control. Information flow control is a complementary approach to access control

to prevent information leakage. It tracks how information propagates through a

program during execution to ensure the program does not leak sensitive information.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 332 (2017) 3–20

1571-0661/© 2017 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2017.04.002

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2017.04.002
http://dx.doi.org/10.1016/j.entcs.2017.04.002
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


Information flow control can be enforced statically [4,5,15,16] or dynamically [13,2].

The former analyses information flow within a program prior to executing, while

the latter analyses information during the execution. The dominant approach for

enforcing secure information flow statically is the use of type systems.

This paper presents a novel approach of using a type system to solve the prob-

lem of accidental misuse of shared files by trusted authorised users. Such misuse

occurs, for example, when a trusted authorised user accidentally disseminate a file

to unauthorised users, write to a file that is meant be read only, or copy a file that

is meant to be read once, after which the file should be erased. Hence, misuse is

action that violates files policies. We design a language of commands to manipu-

late files and specify their policies in a Unix-like file system, and a type system to

enforce these policies. In this setting, files are associated with security types that

represent security policies, and programs are sets of commands to be issued on files

such as read, copy, move, etc. The type system plays the role of a reference monitor

that intercepts and statically analyses each command to be issued on a file and

determines whether or not the command is safe to be executed. Safe commands are

those which do not cause errors during execution. Such errors might be caused by

commands that violate the security policies associated with the files or violate its

own requirements (e.g., a file must exist to be removed). Therefore, if commands

are type-checked, then files and commands policies are not violated and can be

executed safely. In this paper, we focus on enforcing a particular policy, namely,

limiting the number of times a file can be read. However, the same basic ideas can

be extended to enforce other policies as pointed out in Section 6.

The rest of this paper is organised as follows. Section 2 presents the security

types and policies of files. Section 3 describes the language syntax and semantics for

manipulating files, defines security errors and an algorithm for checking syntactical

errors. Section 4 describes the type system, and includes properties. Section 5

introduces a type checking algorithm and proves its soundness and completeness.

In Section 6 we give a brief review of related work, and finally we conclude the

paper in Section 7.

2 Security Types and Policies

Our approach to limiting the number of times a file can be read is by limiting the

number of copies the file can produce. Therefore, a file can be read as much as it can

be copied. If a file cannot be copied, then it can be read once. To enforce this policy,

we need to restrict the access to copy operations and restrict the information flow

caused by all operations such that restrictions of files over copy operations are not

violated. To control the access to copy operations on files we define three security

types which are UC, LCn, and NC each of which specifies a distinct policy of how

copy operations can be performed on them. UC stands for Unrestricted Copy, which

means that a file associated with this type can be copied without restriction. The

copied version of a file of type UC should be allowed to be copied in the same way,

so should also be of type UC. LCn stands for Linear Copy, which means that a

R. Alsowail, I. Mackie / Electronic Notes in Theoretical Computer Science 332 (2017) 3–204



Download English Version:

https://daneshyari.com/en/article/4950011

Download Persian Version:

https://daneshyari.com/article/4950011

Daneshyari.com

https://daneshyari.com/en/article/4950011
https://daneshyari.com/article/4950011
https://daneshyari.com

