
Abstract Domains for Type Juggling

Vincenzo Arceri1

Department of Computer Science, University of Verona, Italy

Sergio Maffeis2

Department of Computing, Imperial College London, UK

Abstract

Web scripting languages, such as PHP and JavaScript, provide a wide range of dynamic features that make
them both flexible and error-prone. In order to prevent bugs in web applications, there is a sore need for
powerful static analysis tools. In this paper, we investigate how Abstract Interpretation may be leveraged
to provide a precise value analysis providing rich typing information that can be a useful component for
such tools.
In particular, we define the formal semantics for a core of PHP that illustrates type juggling, the implicit
type conversions typical of PHP, and investigate the design of abstract domains and operations that, while
still scalable, are expressive enough to cope with type juggling. We believe that our approach can also be
applied to other languages with implicit type conversions.

Keywords: PHP, Static analysis, Abstract interpretation, Type conversions

1 Introduction

The success of web scripting languages such as PHP and JavaScript is also due

to their wide range of dynamic features, which make them very flexible but un-

fortunately also error-prone. A key such feature is that language operations allow

operands of any type, applying implicit type conversions when a specific type is

needed. PHP, our example language, calls this feature type juggling.

In this paper, we investigate how the Abstract Interpretation approach to pro-

gram analysis [3,4] may be leveraged to provide a precise value analysis in presence

of type juggling. Since PHP is dynamically typed, meaning that the same variable

can store values of different types at different points in the execution, our analysis

does not aim to enforce type invariance, but instead aims to determine the most

precise type for each variable in the final state.

Filaretti and Maffeis [6] define a formal operational semantics for most of the

PHP language that is faithful to its mainstream Zend reference implementation [1].

In Section 2, we propose μPHP (micro-PHP), a much smaller core of the language

that is still large enough to illustrate the main challenges related to type juggling. In

fact, μPHP is valid PHP, and behaves exactly like the full language 3 , although the

omission of certain language features from our formalisation (see Section 5) allows

1 Email: vincenzo.arceri@studenti.univr.it
2 Email: sergio.maffeis@imperial.ac.uk
3 All the examples in the paper are both derivable via our semantics and executable in PHP 5.4.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 331 (2017) 41–55

1571-0661/© 2017 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2017.02.003

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:vincenzo.arceri@studenti.univr.it
mailto:sergio.maffeis@imperial.ac.uk
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2017.02.003
http://dx.doi.org/10.1016/j.entcs.2017.02.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


us to define a more straightforward semantics than the one in [6]. We present μPHP

in big-step semantics style, as we are interested in properties of the final state. 4 We

show many examples that will reveal surprising behaviour of PHP to the non-expert.

In Section 3, we define an abstract semantics parametric on the domain, which

defines a corresponding flow- and path-sensitive value analysis. We discuss assump-

tions on such domain under which we can argue that the analysis is sound with

respect to the concrete semantics of μPHP. The design of our semantics makes it

straightforward to implement an abstract interpreter to calculate the analysis result.

In Section 4, we define abstract domains and operations that capture the sub-

tleties of type juggling. Rather than giving the definitions upfront, we expound the

rationale behind our design, stressing expressivity, modularity and hopefully high-

lighting subtle points that can be useful to design domains for other languages with

similar features. Some practical static analyses of realistic languages with dynamic

type conversions, such as [9,11], add to each type lattice extra points that represent

information which can improve the precision of the analysis. Other analyses, such

as [8], use powersets of values, limiting the set sizes by a parameter k in order to

avoid infinite computations. That leads to very expressive domains when up-to-k

values are analysed, that drastically loose precision for further values.

In contrast, we advocate an expressive and systematic approach that refines each

type domain to include just the information necessary to obtain precise abstract

operations and type juggling functions. Our analysis may not be highly efficient but

is scalable, having polynomial complexity: we emphasise precision over performance.

As argued in [4], in theory one should aim for the best correct approximation of a

concrete operator f defined as f 7 “ α˝f ˝γ, but f 7 is sometimes not computable, or

practical. In defining the abstract operations of our type juggling domain we follow

the spirit of this equation, striving to exploit at most the concrete information

available, and delay as much as possible the loss of information caused by merging

values with the \ operator.

Related Work. Since the seminal work of [2], abstract interpretation has been

used to define many value and type analyses, but we are not aware of any analysis

designed to handle in particular the implicit type conversions for scripting languages.

On the practical side, several static analysers for JavaScript and PHP are directly

based, or at least inspired, by abstract interpretation [5, 8–12]. All aim to analyse

real-world PHP programs, and focus most effort on prominent issues such as the

analysis of associative arrays and functions, while paying less attention to implicit

type conversions. As far as we can tell (sometimes essential details are missing from

the cited references), none of the analyses in [5, 9–12] comes close to our level of

precision, except for [8] which, as discussed above, uses expensive powerset domains.

Nevertheless, we hope that our investigation may contribute to improve the precision

of these analysers for programs that make intensive use of implicit type conversions.

Moreover, none of the cited works above provides formal proofs of soundness, and

some such as [10, 12] openly admit to be unsound.

4 It would be easy, but notationally more cumbersome, to define an equivalent small-step semantics better
able to represent trace properties.

V. Arceri, S. Maffeis / Electronic Notes in Theoretical Computer Science 331 (2017) 41–5542



Download	English	Version:

https://daneshyari.com/en/article/4950025

Download	Persian	Version:

https://daneshyari.com/article/4950025

Daneshyari.com

https://daneshyari.com/en/article/4950025
https://daneshyari.com/article/4950025
https://daneshyari.com/

