
Abstract Similarity Analysis

Mila Dalla Preda and Vanessa Vidali
Dipartimento di Informatica, Università degli studi di Verona, Italy

Abstract

Code similarity is an important component of program analysis that finds application in many fields of
computer science. Graph based representations of programs, such as control flow graphs and dependency
graphs, are often used as a basis for deciding code similarity. Indeed, many similarity algorithms observe
particular properties of these graph-based representations of programs in order to decide whether two
programs are similar or not. In this work we propose a general framework for similarity analysis where the
similarity of programs is expressed in terms of abstractions of their control flow graphs representation. In
particular, we consider abstractions of the basic blocks of a control flow graph.

Keywords: Code similarity, abstract interpretation.

1 Introduction

Code similarity studies if two programs are similar or if one program is similar to

a portion of another program (code containment). Code similarity is an important

component of program analysis that finds application in many fields of computer

science, such as reverse engineering of big collections of code fragments [13,16],

clone detection [2,8], identification of violations of the intellectual property of pro-

grams [1,17,12], malware detection [9,10,15], software maintenance [11,19], software

forensics [2,14]. In these applications, when comparing two fragments of code it is

important to take into account changes due to code evolution, compiler optimiza-

tion and post-compile obfuscation. These code changes give rise to fragments of

code that are syntactically different while having the same intended behavior. This

means that it is important to recognize modifications of the same program that are

obtained though compiler optimization or code obfuscation as similar. To this end

we need to abstract from syntactic changes and implementation details that do not

alter the intended behavior of programs, namely that preserve to some extent the

semantics of programs.

1 Email: mila.dallapreda@univr.it, vanessa.vidali@studenti.univr.it
2 This work has been supported by the MIUR FIRB 2013 project FACE RBFR13AJFT.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 331 (2017) 87–99

1571-0661/© 2017 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2017.02.006

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2017.02.006
http://dx.doi.org/10.1016/j.entcs.2017.02.006
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


In order to consider both semantic meanings and syntactic patterns, existing

tools for similarity analysis often employ mixed syntactic/symbolic and semantic

representations of programs, as for example control flow graphs and dependency

graphs that express the flow of control or the dependencies among program instruc-

tions. Recently, in [7] the authors investigate the use of symbolic finite automata

(SFA) and their abstractions for the analysis of code similarity. SFAs have been

introduced in [18] as an extension of traditional finite state automata for modeling

languages with a potential infinite alphabet. Transitions in a SFA are modeled as

constraints interpreted in a given Boolean algebra, providing the semantic interpre-

tation of constraints, and therefore the (potentially infinite) structural components

of the language recognized (see [5,18]). In [7] the authors show how SFAs can be

used to represent both the syntax and the semantics of programs written in an

arbitrary programming language, the idea is to label transitions with syntactic la-

bels representing program instructions, while their interpretation is given by the

semantics of such instructions. Thus, SFAs provide the ideal formal setting in order

to treat within the same model the abstraction of both the syntactic structure of

programs and their intended semantics. A formal framework for the abstraction of

syntactic and semantic properties of SFAs and therefore of programs represented

as SFAs is presented in [7]. This formal framework turns out to be very useful in

the understanding of existing similarity analysis tools, and in the development of

similarity analysis tools based on semantic and syntactic properties of programs.

The work presented in this paper and the prototype implementation that we

propose can be seen as a first step towards an experimental validation of the general

theory for software similarity proposed in [7]. In this paper we consider the standard

control flow graph (CFG) representation of programs that is a simplified model

with respect to the SFA representation of programs proposed in [7]. Indeed, a

CFG can be easily translated into an SFA where the automata is isomorphic to

the CFG, basic blocks label the automata transitions and the interpretation of the

basic blocks is the identity function (this is because the CFG representation of

programs does not account for the interpretation of basic blocks). In the attempt

to build a similarity analysis tool parametric on program’s properties we decide

to start form the simpler case of CFGs. Thus, in this work we present a general

framework for code similarity where the notion of being similar is formalized in terms

of abstraction, in the abstract interpretation sense, of the CFG of programs. We

propose a methodology for testing code similarity that is parametric on the property

of the basic blocks of the CFG that is used for deciding similarity. Indeed, many

existing algorithms for similarity analysis can be interpreted in our framework by

formalizing the abstract property of the blocks of the CFG that they consider. This

allows us to compare existing similarity algorithms by comparing the abstractions

that characterize them. Moreover, the precision of the proposed similarity test can

be tuned by modifying the abstract property of the CFG that is being observed.

We provide a prototype implementation of the proposed methodology that allows

us to test the similarity of two fragments of code with respect to three different

abstract properties of basic blocks.

M. Dalla Preda, V. Vidali / Electronic Notes in Theoretical Computer Science 331 (2017) 87–9988



Download English Version:

https://daneshyari.com/en/article/4950028

Download Persian Version:

https://daneshyari.com/article/4950028

Daneshyari.com

https://daneshyari.com/en/article/4950028
https://daneshyari.com/article/4950028
https://daneshyari.com

