
JIT-Based Cost Analysis for Dynamic Program
Transformations

John Magnus Morton1,4 Patrick Maier2,4 Phil Trinder3,4

School of Computing Science
Univeristy of Glasgow

UK

Abstract

Tracing JIT compilation generates units of compilation that are easy to analyse and are known to execute
frequently. The AJITPar project investigates whether the information in JIT traces can be used to dynam-
ically transform programs for a specific parallel architecture. Hence a lightweight cost model is required for
JIT traces.
This paper presents the design and implementation of a system for extracting JIT trace information from the
Pycket JIT compiler. We define three increasingly parametric cost models for Pycket traces. We determine
the best weights for the cost model parameters using linear regression. We evaluate the effectiveness of the
cost models for predicting the relative costs of transformed programs.

Keywords: Cost Model, JIT Compiler, Program Transformation, Skeleton, Parallelism

1 Introduction

The general purpose hardware landscape is dominated by parallel architectures —
multicores, manycores, clusters, etc. Writing performant parallel code is non-trivial
for a fixed architecture, yet it is much harder if the target architecture is not known in
advance, or if the code is meant to be portable across a range of architectures. Exist-
ing approaches to address this problem of performance portability, e.g. OpenCL [21],
offer device abstraction yet retain a rather low-level programming model typically
intended for a specific problem domain, e.g. for numerical data-parallel problems.

There is less language support for multiple architectures in other domains. For
example symbolic computations, like combinatorial searches or computational al-
gebra, often exhibit large degrees of parallelism but the parallelism is irregular :

1 Email: j.morton.2@research.gla.ac.uk
2 Email: Patrick.Maier@glasgow.ac.uk
3 Email: Phil.Trinder@glasgow.ac.uk
4 This work is funded by UK EPSRC grant AJITPar (EP/L000687/1).

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 330 (2016) 5–25

1571-0661/© 2016 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.12.012

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:j.morton.2@research.gla.ac.uk
mailto:Patrick.Maier@glasgow.ac.uk
mailto:Phil.Trinder@glasgow.ac.uk
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.12.012
http://dx.doi.org/10.1016/j.entcs.2016.12.012
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


the number and size of parallel tasks is unpredictable, and parallel tasks are often
created dynamically and at high rates [28].

The Adaptive Just-in-Time Parallelism (AJITPar) project [2] investigates a novel
approach to deliver portable parallel performance for programs with irregular paral-
lelism across a range of architectures by combining declarative task parallelism with
dynamic scheduling and dynamic program transformation. Specifically, AJITPar
proposes to adapt task granularity to suit the architecture by transforming tasks at
runtime, thus varying the amount of parallelism depending on the architecture. To
facilitate dynamic transformations, AJITPar will leverage the dynamic features of
the Racket language and its recent trace-based JIT compiler, Pycket [13,10].

Dynamic task scheduling and task transformation both benefit from predicted
task runtimes. This paper investigates how to construct lightweight cost models for
JIT traces. A JIT trace is simply a linear path through the program control flow
graph that the compiler has identified as being executed often. We hypothesize that
even very simple cost models can yield sufficiently accurate predictions as traces
have very restricted control flow, and we only require to compare the relative costs
of pre- and post-transformed expressions.

The main contributions in this paper are as follows. We have designed and imple-
mented a system for extracting JIT trace information from the Pycket JIT compiler
(Section 3). We have defined 3 cost models for JIT traces, ranging from very simple
to parametric, and we have used an regression analysis over the Pycket benchmark
suite to automatically tune the architecture-specific cost model parameters (Sec-
tion 4). We have shown that the tuned cost model can be used to accurately predict
the relative execution times of transformed programs (Section 5).

2 Related Work

2.1 AJITPar

The Adaptive Just-In-Time Parallelisation (AJITPar) project [2] aims to investigate
a novel approach to deliver portable parallel performance for programs with irreg-
ular parallelism across a range of architectures. The approach proposed combines
declarative parallelism with Just In Time (JIT) compilation, dynamic scheduling,
and dynamic transformation. The project aims to investigate the performance porta-
bility potential of an Adaptive Skeletons (AS) library based on task graphs, and an
associated parallel execution framework that dynamically schedules and adaptively
transforms the task graphs. We express common patterns of parallelism as a rel-
atively standard set of algorithmic skeletons [17], with associated transformations.
Dynamic transformations, in particular, rely on the ability to dynamically compile
code, which is the primary reason for basing the framework on a JIT compiler.
Moreover, a trace-based JIT compiler can deliver estimates of task granularity by
dynamic profiling and/or dynamic trace cost analysis, and these can be exploited
by the dynamic scheduler. A trace-based JIT-compiled functional language was
chosen as functional programs are easy to transform; dynamic compilation allows
a wider range of transformations including ones depending on runtime information;

J.M. Morton et al. / Electronic Notes in Theoretical Computer Science 330 (2016) 5–256



Download English Version:

https://daneshyari.com/en/article/4950033

Download Persian Version:

https://daneshyari.com/article/4950033

Daneshyari.com

https://daneshyari.com/en/article/4950033
https://daneshyari.com/article/4950033
https://daneshyari.com

