
Memory Consumption Analysis for a
Functional and Imperative Language

Jérémie Salvucci1 and Emmanuel Chailloux2

Sorbonne Universités,
UPMC Univ. Paris 06,

UMR 7606, LIP6,
4 Place Jussieu, F-75005 Paris, France

Abstract

The omnipresence of resource-constrained embedded systems makes them critical components. Program-
mers have to provide strong guarantees about their runtime behavior to make them reliable. Among these,
giving an upper bound of live memory at runtime is mandatory to prevent heap overflows from happening.
The paper proposes a semi-automatic technique to infer the space complexity of ML-like programs with
explicit region management. It aims at combining existing formalisms to obtain the space complexity of
imperative and purely functional programs in a consistent framework.

Keywords: ML, regions, static analysis, memory analysis.

1 Introduction

Deploying software in constrained environments requires strong guarantees about its

runtime behavior. In memory-constrained embedded systems, dynamic allocation

is often prohibited to keep execution time analyses doable and avoid heap overflows.

We introduce a programming language and a resource consumption analysis to en-

able dynamic allocation while providing an upper bound of live memory at compile

time.

In this paper, we propose a language à la ML mixing purely functional and

imperative features with an explicit region mechanism. To retrieve information

about a program memory interactions, we rely on a static type & effect system

and manual memory management through region related primitives. The type

system aims at ensuring the absence of memory-related errors at compile time. To

1 jeremie.salvucci@lip6.fr
2 emmanuel.chailloux@lip6.fr

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 330 (2016) 27–46

1571-0661/© 2016 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.12.013

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.12.013
http://dx.doi.org/10.1016/j.entcs.2016.12.013
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


perform this, programmers have to manage memory manually through a restricted

set of primitives describe in section 3. The effect system helps generalize terms and

discriminate between purely functional and imperative styles at the function level.

The analysis relies on the correctness of the type system to consider only error-

free programs with respect to memory. It combines several existing resource con-

sumption analyses depending on the style inferred by the effect system. For in-

stance, a function which does not allocate memory do not require analysis whereas

a function which allocates memory and performs side-effects needs careful han-

dling. On pure functions, we apply automatic amortized analysis [7] adapted to the

region mechanism. On imperative functions, regions offer spatial information for

side-effects, we use invariants on iteration spaces provided by the programmer as

annotations. Both analyses return a symbolic expression characterising the space

complexity of the analyzed function for each region involved in the computation.

The composition of these symbolic expressions with a careful handling of side-effects

give the program memory consumption.

To allocate memory and to reclaim memory are orthogonal operations. Allocat-

ing memory does not require information about the current state of the memory

graph. Whereas, reclaiming memory requires a global view of the heap to distin-

guish reachable from unreachable values. In this work, we use regions to gather

enough information at compile time to prevent overpessimistic upper bounds by

considering regions freed by the programmer in a sound way.

The main goal of this paper is to introduce a framework to combine various

memory consumption analyses depending on the programming style used at func-

tion level to provide an upper bound of live memory at compile time considering

reclaimed memory. In the remainder, related works are presented in section 2. We

describe the language in section 3 with its type & effect system on which we base

our analysis. Then, we show how to deal with purely functional and imperative

features in sections 4, 5 as described above and section 6 composes them in a con-

sistent framework. Then, we show how it works on an example in section 7. Finally,

we conclude with a discussion about current limitations and further improvements.

2 Related works

Resource consumption analysis started in the late 70s with METRIC [14] targetting

the best, worst and average execution times of programs written in a pure subset

of Lisp. Based on recurrence relations, it can be adapted to memory consumption

analysis. Contrary to time, memory can be reclaimed. Hence, new methods have

emerged from both purely functional and imperative communities to obtain upper

bounds on live memory.

Sized types [9] have been applied to the core part of HUME [13], a purely

functional language with an eager evaluation mechanism. It infers linear space

complexities and provides an upper bound on allocated memory without requiring

the user intervention.

Automatic amortized analysis [6], based on Tarjan’s work [11], has been used in

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4628



Download English Version:

https://daneshyari.com/en/article/4950034

Download Persian Version:

https://daneshyari.com/article/4950034

Daneshyari.com

https://daneshyari.com/en/article/4950034
https://daneshyari.com/article/4950034
https://daneshyari.com

