Available online at www.sciencedirect.com

H H Electronic Notes in
SC|enceDlreCt Theoretical Computer

Science

W TN
ELSEVIER Electronic Notes in Theoretical Computer Science 325 (2016) 127-146
www.elsevier.com/locate/entcs

Iteration and Labelled Iteration

Bram Geron' and Paul Blain Levy 2

School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Abstract

We analyse the conventional sum-based representation of iteration from the perspective of programmers,
and show that the syntax they suggest is fundamentally not a good representation of Java-style iteration
with for, while, break, and continue. We present an alternative syntax, which we call “labelled iteration”,
where loops are identified using labels.

The languages are analysed: we give denotational and operational semantics, adequacy proofs for both
languages, and a translation function from sum-based iteration to labelled iteration.

Keywords: iteration, loops, lexical binding, operational semantics, denotational semantics, higher-order
language, lambda calculus, de Bruijn indices

1 Introduction

1.1 Overview

Iteration is an important programming language feature.

* In imperative languages, it is best known in for and while loops. The meaning
of such a loop is to iterate code until some condition is met, or if the condition
is never met, the loop diverges. Such loops are often supplemented by break and
continue.

* It has also been studied in the lambda calculus setting [13,19,21].

* In the categorical setting, iteration corresponds to complete Elgot monads [9].
They descend from iterative, iteration, and Elgot theories, and their algebras and
monads [7,1,2,3,23], which study variants of the sum-based iteration —t. This field
is related to Kleene monads [10,17,18].

! Email: bxg314@cs.bham.ac.uk
2 Email: P.B.Levy@cs.bham.ac.uk

http://dx.doi.org/10.1016/j.entcs.2016.09.035
1571-0661/© 2016 Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.09.035
http://dx.doi.org/10.1016/j.entcs.2016.09.035
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

128 B. Geron, P.B. Levy / Electronic Notes in Theoretical Computer Science 325 (2016) 127-146

Iteration can be implemented using recursion, but it is simpler: semantics of recur-
sion require a least fixpoint, where iteration has a simple set-based semantics. Also
from the programmer’s perspective, iteration and recursion are different: a program
using a for or while loop can sometimes be clearer than the same program using
recursion.

1.2 The sum-based representation of iteration

We study two representations of iteration. First, the classical sum-based construct
~1 that turns a computation I', A - M : A+ B into a computation I', A - M*: B.
Categorically, this representation of iteration corresponds to complete Elgot monads
[9]. To understand the correspondence better, we introduce a term constructor iter
for . (Details are in Section 2.)

rfYv:A oA M:A+B
IiterV, 2. M : B

Imperative programs with for and while can now be encoded using iter. As an
example, the program on the left corresponds to the term on the right:

imperative A-calculus-like
= V,
* . iter V, x.
while (p(2)) { i p(a)
x:= f(2);

thenreturn inl f(x)

}

else return inr g(z)
return g(z);

This works as follows. The iter construct introduces a new identifier z, which starts
at V. The body is evaluated. If the body evaluates to inr W, then the loop is
finished and its result is W. If the body evaluates to inl V', then we set z to V',
and keep on evaluating the body until it evaluates to some inr W.

1.8 The “De Bruyn index” awkwardness with the sum-based representation

Programmers using imperative languages regularly use nested loops, as well their
associated break and continue statements, which may be labelled. Such state-
ments are not essential for programming, and code using break or continue can
be rewritten so it does not use either statement, but this usually comes at a price
in readability. There is usually a labelled and an unlabelled form of break and
continue.

On the left side of Figure 1, we show an program in a Java-like language with
nested labelled loops, and labelled continue statements. The colours can be ig-

nored for now. The program computes the formula Y. o< [T  o0<jcs  al4][J],
Aali][0]#5  Aa[i][4] even



Download English Version:

https://daneshyari.com/en/article/4950058

Download Persian Version:

https://daneshyari.com/article/4950058

Daneshyari.com


https://daneshyari.com/en/article/4950058
https://daneshyari.com/article/4950058
https://daneshyari.com

