
Iteration and Labelled Iteration

Bram Geron1 and Paul Blain Levy 2

School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Abstract

We analyse the conventional sum-based representation of iteration from the perspective of programmers,
and show that the syntax they suggest is fundamentally not a good representation of Java-style iteration
with for, while, break, and continue. We present an alternative syntax, which we call “labelled iteration”,
where loops are identified using labels.
The languages are analysed: we give denotational and operational semantics, adequacy proofs for both
languages, and a translation function from sum-based iteration to labelled iteration.

Keywords: iteration, loops, lexical binding, operational semantics, denotational semantics, higher-order
language, lambda calculus, de Bruijn indices

1 Introduction

1.1 Overview

Iteration is an important programming language feature.

● In imperative languages, it is best known in for and while loops. The meaning
of such a loop is to iterate code until some condition is met, or if the condition
is never met, the loop diverges. Such loops are often supplemented by break and
continue.

● It has also been studied in the lambda calculus setting [13,19,21].

● In the categorical setting, iteration corresponds to complete Elgot monads [9].
They descend from iterative, iteration, and Elgot theories, and their algebras and
monads [7,1,2,3,23], which study variants of the sum-based iteration −†. This field
is related to Kleene monads [10,17,18].

1 Email: bxg314@cs.bham.ac.uk
2 Email: P.B.Levy@cs.bham.ac.uk

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 325 (2016) 127–146

1571-0661/© 2016 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.09.035

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.09.035
http://dx.doi.org/10.1016/j.entcs.2016.09.035
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


Iteration can be implemented using recursion, but it is simpler: semantics of recur-
sion require a least fixpoint, where iteration has a simple set-based semantics. Also
from the programmer’s perspective, iteration and recursion are different: a program
using a for or while loop can sometimes be clearer than the same program using
recursion.

1.2 The sum-based representation of iteration

We study two representations of iteration. First, the classical sum-based construct−† that turns a computation Γ,A ⊢ M ∶ A +B into a computation Γ,A ⊢ M † ∶ B.
Categorically, this representation of iteration corresponds to complete Elgot monads
[9]. To understand the correspondence better, we introduce a term constructor iter
for −†. (Details are in Section 2.)

Γ ⊢v V ∶ A Γ, x∶A ⊢c M ∶ A +B

Γ ⊢c iter V, x. M ∶ B
Imperative programs with for and while can now be encoded using iter. As an
example, the program on the left corresponds to the term on the right:

imperative λ-calculus-like

x ∶= V ;

while (p(x)) {
x ∶= f(x);

}
return g(x);

iter V,x.

if p(x)
then return inl f(x)
else return inr g(x)

This works as follows. The iter construct introduces a new identifier x, which starts
at V . The body is evaluated. If the body evaluates to inr W , then the loop is
finished and its result is W . If the body evaluates to inl V ′, then we set x to V ′,
and keep on evaluating the body until it evaluates to some inr W .

1.3 The “De Bruijn index” awkwardness with the sum-based representation

Programmers using imperative languages regularly use nested loops, as well their
associated break and continue statements, which may be labelled. Such state-
ments are not essential for programming, and code using break or continue can
be rewritten so it does not use either statement, but this usually comes at a price
in readability. There is usually a labelled and an unlabelled form of break and
continue.

On the left side of Figure 1, we show an program in a Java-like language with
nested labelled loops, and labelled continue statements. The colours can be ig-
nored for now. The program computes the formula ∑ 0≤i≤8

∧a[i][0]≠5
∏ 0≤j≤8
∧a[i][j] even

a[i][j],

B. Geron, P.B. Levy / Electronic Notes in Theoretical Computer Science 325 (2016) 127–146128



Download English Version:

https://daneshyari.com/en/article/4950058

Download Persian Version:

https://daneshyari.com/article/4950058

Daneshyari.com

https://daneshyari.com/en/article/4950058
https://daneshyari.com/article/4950058
https://daneshyari.com

