
Reducing Complex CSP Models to Traces
via Priority

David Mestel1 A.W. Roscoe2

Department of Computer Science, University of Oxford

Abstract

Hoare’s Communicating Sequential Processes (CSP) [6] admits a rich universe of semantic models. In this
paper we study finite observational models, of which at least six have been identified for CSP, namely traces,
failures, revivals, acceptances, refusal testing and finite linear observations [11]. We show how to use the
recently-introduced priority operator ([12], ch.20) to transform refinement questions in these models into
trace refinement (language inclusion) tests. Furthermore, we are able to generalise this to any (rational)
finite observational model. As well as being of theoretical interest, this is of practical significance since the
state-of-the-art refinement checking tool FDR3 [4] currently only supports two such models.

Keywords: CSP, denotational semantics, priority

1 Introduction

A number of different forms of process calculus have been developed for the mod-

eling of concurrent programs, including Hoare’s Communicating Sequential Pro-

cesses (CSP) [6], Milner’s Calculus of Communicating Systems (CCS) [7], and the

π-calculus [8]. Unlike the latter two, CSP’s semantics are traditionally given in

behavioural semantic models coarser than bisimulation.

In this paper, we study finite linear-time observational models for CSP; that is,

models where all observations considered can be determined in a finite time by an

experimenter who can see the visible events a process communicates and the sets of

events it can offer in any stable state. While the experimenter can run the process

arbitrarily often, he or she can only record the results of individual finite executions.

Thus each behaviour recorded can be deduced from a single finite sequence of events

together with the sets of events accepted in stable states during and immediately

after this trace.

1 Email: david.mestel@cs.ox.ac.uk
2 Email: bill.roscoe@cs.ox.ac.uk

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 325 (2016) 237–252

1571-0661/© 2016 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.09.041

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:david.mestel@cs.ox.ac.uk
mailto:bill.roscoe@cs.ox.ac.uk
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.09.041
http://dx.doi.org/10.1016/j.entcs.2016.09.041
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/


At least six such models have been considered for CSP, but the state-of-the

art refinement checking tool, FDR3 [4], currently only supports two, namely traces

and failures (it also supports the failures-divergences model, which is not finite

observational).

We present a construction which produces a context C such that refinement

questions in the failures model correspond to trace refinement questions under the

application of C. We are able to generalise this to show (Theorem 5.4) that a similar

construction is possible not only for the six models which have been studied, but

also for any sensible finite observational model (where ‘sensible’ means that the

model can be recognised by a finite-memory computer, in a sense which we shall

make precise).

We first briefly describe the language of CSP. We next give an informal de-

scription of our construction for the failures model. To prove the result in full

generality, we first give a formal definition of a finite observational model, and of

the notion of rationality. We then describe our general construction. Finally we

discuss performance and optimisation issues.

2 The CSP language

We provide a brief outline of the language, largely taken from [11]; the reader is

encouraged to consult [12] for a more comprehensive treatment.

Throughout, Σ is taken to be a finite nonempty set of communications that are

visible and can only happen when the observing environment permits via hand-

shaken communication. The actions of every process are taken from Σ∪{τ}, where
τ is the invisible internal action that cannot be prevented by the environment.

Note that the usual treatment of CSP permits sequential composition by including

another un-preventable event � to represent termination; this adds slight compli-

cations to each model and we omit it for simplicity. It could be added back without

any significant alteration to the results of this paper.

The constant processes of CSP are

• STOP which does nothing—a representation of deadlock.

• div which performs (only) an infinite sequence of internal τ actions—a represen-

tation of divergence or livelock.

• CHAOS which can do anything except diverge.

The prefixing operator introduces communication:

• a → P communicates the event a before behaving like P .

There are two forms of binary choice between a pair of processes:

• P � Q lets the process decide to behave like P or like Q: this is nondeterministic

or internal choice.

• P � Q offers the environment the choice between the initial Σ-events of P and Q.

If the one selected is unambiguous then it continues to behave like the one chosen;

if it is an initial event of both then the subsequent behaviour is nondeterministic.

D. Mestel, A.W. Roscoe / Electronic Notes in Theoretical Computer Science 325 (2016) 237–252238



Download	English	Version:

https://daneshyari.com/en/article/4950064

Download	Persian	Version:

https://daneshyari.com/article/4950064

Daneshyari.com

https://daneshyari.com/en/article/4950064
https://daneshyari.com/article/4950064
https://daneshyari.com/

