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a  b  s  t  r  a  c  t

Engineering  problems  presenting  themselves  in a multiobjective  setting  have  become  commonplace
in  most  industries.  In such  situations  the  decision  maker  (DM)  requires  several  solution  options  prior to
selecting  the best  or the most  attractive  solution  with  respect  to the  current  industrial  circumstances.  The
weighted  sum  scalarization  approach  was  employed  in  this  work  in conjunction  with  three  metaheuristic
algorithms:  particle  swarm  optimization  (PSO),  differential  evolution  (DE)  and  the improved  DE algorithm
(GTDE)  (which  was  enhanced  using  ideas  from  evolutionary  game  theory).  These  methods  are  then  used
to generate  the  approximate  Pareto  frontier  to  the  nano-CMOS  voltage-controlled  oscillator  (VCO)  design
problem. Some  comparative  studies  were  then  carried  out  to compare  the  proposed  method  as  compared
to  the  standard  DE  approach.  Examination  on the  quality  of the  solutions  across  the  Pareto  frontier
obtained  using  these  algorithms  was  carried  out  using  the  hypervolume  indicator  (HVI).

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Many optimization problems are frequently encountered by
engineers and decision makers working with systems involving
nano-circuits [1–3]. Currently, standard circuit performance opti-
mization is usually carried out manually. This approach usually
takes a lot of time and requires plenty of skills. These diffi-
culties compound drastically especially when optimizing circuits
at a nano-level. Besides optimization, debugging and trouble-
shooting such circuit designs can take several days and are
usually very costly [4]. In most optimization scenarios, the
decision-maker deals with conflicting objective functions such
as power consumption factors and voltage-controlled oscillator
(VCO) frequency [5,6]. In this work, a multi-objective framework
is introduced for the performance optimization of a 45 nm CMOS
VCO.

In multi-objective optimization, one approach that has been
effective in measuring the quality of the solution set that constructs
the Pareto-frontier (in cases where the Pareto frontier is unknown)
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is the hypervolume indicator (HVI) [7]. Recently, this indicator has
been frequently applied in many works involving MO problems
[8–10]. The HVI is the only indicator which is strictly Pareto-
compliant and can be used to measure the quality of solution sets
(degree of dominance) in MO optimization problems [8,11]. In this
work, this measurement metric is employed to measure the solu-
tion quality and perform comparative analysis.

Metaheuristic approaches have become common place in indus-
tries where optimization problems are encountered. One such
state-of-the-art approach is differential evolution (DE). DE is a
population-based evolutionary algorithm that has been derived
from genetic algorithms (GA) [12]. DE was introduced in the
mid-nineties by Storn and Price [13]. From then, DE has been
employed extensively to solve problems which are nonlinear, non-
continuous, noisy, multidimensional, have many local minima,
constraints or highly stochastic. For more extensive works involv-
ing DE in industrial engineering see [14–16]. Recently, DE has also
been employed in MO engineering problems. For instance, in Gane-
san et al. [14,17], the optimal parameters were identified for the MO
cement-bonded mold system using the DE and Hopfield DE strate-
gies. In the works of Li et al. [18] and de Oliviera et al. [19] the DE
technique was  employed for antenna array design and in graphic
processing unit (GPU) optimization.
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In current times, metaheuristic has become a very common tool
when it comes to engineering optimization especially in sectors
involving design and operations. For instance, population-based
techniques such as DE and Artificial Bee Colony (ABC) [20] have
been employed for parametric optimization of turning operations
[21–23]. In addition to evolutionary techniques, swarm based algo-
rithms such as Cuckoo Search [24] has also been utilized in milling
operations. The central idea in these efforts was  to implement
metaheuristic techniques to determine the optimal machining
parameters for milling [24,25]. Structural design optimization has
been a standing problem for many years since this problem is
usually multivariate, nonlinear and highly complex. Thus, recently
techniques such as evolutionary strategies, particle swarm opti-
mization (PSO) and firefly search have been employed to deal with
these problems [26–29]. In these works the metaheuristic is seen
to perform well by producing efficient results which often outper-
form the common practices by a significant margin. Metaheuristics
has also been employed in other engineering systems related to
assembly line balancing and design optimization in manufacturing
[30,31]. In these systems, strategies such as hybrid ABC approaches
[32], Taguchi method [33], PSO [34], hybrid simulated annealing
[35] and immune system [36,37] have been utilized effectively.

The solution method introduced in this work involves the inte-
gration of evolutionary game theory (EGT) into DE to enhance
specific search functionalities. EGT has been used in combination
with metaheuristic algorithms like PSO to solve problems involv-
ing the simulations of evolutionary games [38,39]. In addition, this
algorithmic form has been also used to solve optimization test func-
tions where the algorithm’s performance was benchmarked [40].
The central aim of this work is to solve and obtain a set of Pareto-
efficient solution options for the MO performance optimization of
a 45 nm CMOS VCO. The 45 nm CMOS VCO problem was formu-
lated and systematically validated in Chio et al. [40]. The approach
proposed in this work is the game-theoretic differential evolu-
tion (GTDE). The solutions produced by the GTDE approach is then
benchmarked and evaluated using the HVI.

This paper is organized as follows. In Section 2 of this paper, the
45 nm CMOS VCO problem description is presented. In Section 3 the
DE, PSO and GTDE techniques are discussed and this is followed by
Section 4 which analyzes the computational results. Finally, this
paper ends with the concluding remarks and recommendations for
future works.

2. Design problem

In Kougianos and Mohanty [41], the design of the nano-CMOS
VCO was optimized in a MO framework by employing a baseline
design. In the mentioned work, three objectives, the frequency of
oscillation (FOSC), average dynamic power (Pave) and leakage power
minimization (Pleak), were identified. The design parameters are as
follows:

1. Gate oxidation thickness (Tox)
2. Width to length ratio for the PMOS inverter transistors (ˇ1)
3. Width to length ratio for the NMOS inverter transistors (ˇ2)
4. Width to length ratio for the PMOS current-starved transistors

(ˇ3)
5. Width to length ratio for the NMOS current-starved transistors

(ˇ4)

The objective functions and the constraints of the design param-
eters are given as follows:

Fosc = 786.43 − 93.36Tox + 60.3ˇ2 (1)

Pave = 35.05 + 5.7ˇ4 + 3.3ˇ3 (2)

Pleak = 376.35 − 28.58Tox + 29.32ˇ1 + 36.17ˇ2 (3)

1.4 nm ≤ Tox ≤ 1.7 nm

5 ≤ ˇ1 ≤ 10

1.72 ≤ ˇ2 ≤ 3.44

5 ≤ ˇ3 ≤ 10

1.72 ≤ ˇ4 ≤ 3.44

(4)

The MO design optimization of the nano-CMOS VCO problem is
shown as follows:

Max  → Fosc

Min  → Pave

Min  → Pleak

subject to design constraint s

(5)

3. Computational approach

3.1. Differential evolution (DE)

DE is a class of evolutionary meta-heuristic algorithms first
introduced by Storn and Price [13]. The core idea of this technique
is the assimilation of perturbative methods into standard evolu-
tionary algorithms. DE starts by the initialization of a population
of at least four individuals denoted as P. These individuals are real-
coded vectors with some size N. The initial population of individual
vectors (the first generation denoted gen = 1) are randomly gener-
ated in appropriate search ranges. One principal parent denoted xp

i
and three auxiliary parents denoted xa

i
are randomly selected from

the population, P. In DE, every individual, I, in the population, P,
would become a principle parent, xp

i
, at one generation or the other

and thus have a chance in mating with the auxiliary parents, xa
i
.

The three auxiliary parents then engage in ‘differential mutation’
to generate a mutated vector, Vi.

Vi = xa
1 + F(xa

2 − xa
3) (6)

where F is the real-valued mutation amplification factor which is
usually between 0 and 1. Next Vi is then recombined (or exponen-
tially crossed-over) with xp

i
to generate child trial vector, xchild

i
. The

probability of the cross-over, CR, is an input parameter set by the
user. In DE, the survival selection mechanism into the next gener-
ation is called ‘knock-out competition’. This is defined as the direct
competition between the principle parent, xp

i
, and the child trial

vector, xchild
i

, to select the survivor of the next generation as follows:

xi(gen + 1) =
{

xchild
i

(gen) ↔ f (xchild
i

) better than f (xp
i
)

xp
i
(gen) ↔ otherwise

(7)

Therefore, the knock-out competition mechanism also serves as
the fitness evaluation scheme for the DE algorithm. The parameter
setting for the DE algorithm is given in Table 1: The algorithm of
DE is shown in Algorithm 1.

Table 1
Differential evolution (DE) parameter settings.

Parameters Values

Individual size, N 6
Population size, P 7
Mutation amplification factor, F 0.3
Cross-over probability, CR 0.667
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