
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Reprint of ‘‘Robust partial-load experiments with Showstopper’’
Andrej Podzimek a,c,∗, Lubomír Bulej a,c, Lydia Y. Chen b, Walter Binder a, Petr Tůma c

a Faculty of Informatics, Università della Svizzera italiana, Switzerland
b IBM Zurich Research Lab, Switzerland
c Department of Distributed and Dependable Systems, Charles University in Prague, Czech Republic

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Partial load
Resource sharing
Performance evaluation
Resource isolation
Load control
Reproducible load

a b s t r a c t

Concurrent execution of multiple applications leads to varying partial utilization of shared resources.
Understanding system behavior in these conditions is essential formaking concurrent execution efficient.
Unfortunately, anticipating behavior of shared resources at partial utilization in complex systems is
difficult, realistic experiments that reproduce and examine such behavior are therefore needed.

To facilitate experiments at partial utilization, we present a tool that accurately controls the processor
utilization of arbitrary concurrent workloads, either establishing constant partial load or replaying a
variable load trace. We validate the ability of the tool to enforce the configured partial utilization on
multiple platforms, and use the tool to collect novel information on system behavior at partial utilization
levels.

In detail, our experiments show how to examine the complex relationship between utilization and
throughput, useful for tasks such as performance debugging or system dimensioning, and we show this
relationship for the DaCapo benchmarks. Further, we show that CPU pinning (a technique used to improve
workload isolation) can benefit fromdynamic response to systemutilization, improving system efficiency
with partial utilization. Finally, we show that the overhead of virtualization also changes with partial
utilization and CPU allocation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For reasons ranging from efficiency to maximizing achievable
performance, concurrent execution of multiple workloads is the
norm for most computer systems today. Workload colocation
has been researched extensively, with a number of results
spanning several decades—for example, Chase et al. [1] achieves
demonstrated energy savings of 29% and projected energy savings
of as much as 78% on a web workload.

To support concurrent execution efficiently, essential system
features such as task scheduling and resource allocation have to
deal with resource sharing, which influences multiple aspects of
performance [2–4]. There are numerous possible interactions—
workloads running on a contemporary server can influence each
other through mechanisms such as simultaneous multithread-
ing [5], same page merging [6], frequency boosting with thermal
budgeting [7], and more.

DOI of original article: http://dx.doi.org/10.1016/j.future.2016.04.020.
∗ Corresponding author at: Department of Distributed and Dependable Systems,

Charles University in Prague, Czech Republic.
E-mail address: podzimek@d3s.mff.cuni.cz (A. Podzimek).

The multitude of possible resource interactions is difficult
to capture comprehensively—research advances therefore often
tackle selected interaction aspects individually. In this context,
abstracting away from certain interactions is essential to keep
the research problems tractable. At the same time, evaluating the
impact of such simplification on research results becomes equally
necessary—a recent case study by Corradi et al. [8] in fact warns
that the growing distance between the theoretical assumptions
and the real system behavior may make some of the existing
research results rather difficult to apply.

A straightforward method for assessing the impact of theo-
retical simplifications is experimental validation. Unfortunately,
evaluating resource interactions in realistic conditions is an ex-
pensive undertaking. Resource utilization depends on workload
type in complex ways and even if we can control the workload,
it is not always clear what workload intensity to use to achieve
a particular resource utilization. Our work contributes a tool that
simplifies experiments with varying partial utilization of shared
resources. Given an arbitrary executing workload, the tool ob-
serves a resource utilizationmetric of choice – processor utilization
in our case – and throttles the workload to achieve the target uti-
lization. This removes the need for implementing workload gener-
ation harnesseswith configurableworkload intensity, andmakes it

http://dx.doi.org/10.1016/j.future.2016.11.013
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.11.013
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://dx.doi.org/10.1016/j.future.2016.04.020
mailto:podzimek@d3s.mff.cuni.cz
http://dx.doi.org/10.1016/j.future.2016.11.013

2 A. Podzimek et al. / Future Generation Computer Systems () –

possible to examine system behavior at a particular utilization di-
rectly. The modular tool design and the available experiment con-
figuration options are described in Section 3, the ability to enforce
configured partial utilization is validated in Section 4.

After introducing and validating the tool design, we use it
to present novel results on the behavior of computing systems
under partial utilization. In Section 5, we look at the complex
relationship betweenworkload intensity and processor utilization.
Our results provide a more accurate empirical alternative to
operational analysis, which is typically used to relate utilization
and throughput [9]. In Section 6, we look at how partial utilization
impacts the practice of pinning workloads to selected processor
cores. Against common intuition, our results show that the most
efficient and most performant pinning configurations change with
utilization. Finally, in Section 7, we briefly show how partial
utilization influences virtualization overhead. These results are
particularly relevant to cloud computing environments, where
partial utilization and virtualization is often the norm.

This article constitutes a comprehensive presentation of our
work on experimental evaluation of partially utilized systems, and
combines and extends previously published conference material.
Our extensions focus both on addingmoredepth to existing results,
as well as on entirely new experiments—ultimately providing a
more complete picture that explains the need for partial-load
experiments along with compelling experimental results.

Our contributions can be summarized as follows:

• We present a comprehensive description of the Showstopper
tool used to conduct experiments at partial CPU utilization. The
basic concepts and the high-level architecture of Showstopper
were introduced in our prior work [10,11], based on a prelimi-
nary version of the tool. Thanks to its modular architecture, the
tool has been significantly extended to provide a wider range of
control and dithering mechanisms, and to provide support for
measurement of system load inside Linux LXC containers.
Here we present a detailed description of the architecture and
the various building blocks of the control algorithm, along with
guidelines for choosing the values of critical parameters. We
validate the ability of Showstopper to enforce and maintain
the desired partial utilization, and extend the previously pub-
lished results with quantitative evaluation of accuracy of dif-
ferent configurations of the load-control algorithm.

• We introduce a novel methodology to examine the relationship
between processor utilization and application throughput, and
present experimental results that illustrate the complex nature
of this relationship. We extend our prior work [10] by intro-
ducing fast-forwarding of load traces replayed by Showstop-
per, and evaluate the effect of fast-forwarding on the accuracy
of throughput measurements. We also significantly extend the
workload and platform coverage.

• We provide a novel study of the impact of CPU pinning on
performance and energy efficiency for pairs of colocated work-
loads. Our experiments with different CPU pinning configura-
tions at varying levels of background load expose a trade-off
between workload isolation and overall system performance.
We also show that the performance increase due to pinning
configuration at certain background loads increases the over-
all energy efficiency of the system. Here we complement the
results presented in our prior work [12] with a study of the
overhead observed in the employed colocation solutions (KVM
virtual machines and LXC containers) at partial loads.

2. Motivating challenges

In this section, we demonstrate several challenges that
motivate our work on experiments with partial utilization. While

some of our examples aim for brevity, we would like to stress
that the presented challenges get even more complex in typical
computing systems with a deep software stack and sharing of
hardware among colocated virtual machines.

2.1. Controlling utilization

Resource utilization metrics serve as the basis for monitoring
and managing the quality of service provided by a computer
system. Services such as Amazon Cloudwatch [13] are commonly
available to clients of cloud computing providers, and many
resource management policies are defined in terms of resource
utilization. Combined traces of virtual and physical resource
utilization are commonly collected on contemporary production
systems for both physical and virtual machines. These traces
provide insight into allocation and sharing of resources and aid in
developing resource management policies [14,15]. Fig. 1 shows an
example of such a trace, capturing the average processor load over
a four-hour period, sampled in 15-min intervals.

Given a trace that describes realistic resource utilization
conditions, an experiment that seeks to validate theoretical results
and assumptions in the same conditions will need to achieve the
same utilization trace. Typically, the experimentwould also rely on
available benchmarks as examples of realistic workloads [16–20].
Many benchmarks, however, are designed to execute in isolation,
with all system resources at their disposal. In contrast, reproducing
realistic utilization conditions requires a partial and coordinated
use of system resources. Even benchmarks that aim to limit the
system load [21] do so by controlling application level metrics
(typically problem size or request rate) rather than by observing
and responding to system level resource utilization. The whole
problem becomes even more complex if we consider sustaining
a given partial load (see footnote 1) while executing multiple
benchmarks in parallel.

To illustrate the difficulties,we explore two solutions applicable
to achieving partial loads with existing benchmarks: (1) executing
multiple benchmarks in parallel so that the number of benchmarks
divided by the number of processors equals the desired load,
and (2) executing a benchmark with a constant duty cycle1
corresponding to the desired load. These solutions also serve as
baselines for our approach.

We evaluate the two baseline solutions on six DaCapo [22]
benchmarks with a default iteration time short enough to make
throughput estimates from short time intervals (tens of seconds)
feasible. The selected benchmarks capture various types of
multi-threaded behavior—ranging from an almost single-threaded
execution (fop, luindex), through a moderate multi-threadedness
failing to saturate all available processors (avrora, h2), to heavily
multi-threaded computations capable of consuming all CPU
capacity (sunflow, xalan). Generally speaking, the key difference
between moderately and heavily multi-threaded benchmarks lies
in the overall frequency of synchronization among threads. While
threads in moderately multi-threaded benchmarks synchronize
and block each other frequently (forming e.g. producer–consumer
relationships or participating in rendezvous events), threads in
heavily multi-threaded benchmarks spend most of their time
working on well isolated subproblems of a parallel computation,
without the need to block and synchronize with each other
frequently.

Our goal is to achieve partial loads of 33% and 75% using
the above methods. For method (1), this means executing 4 and

1 We use the terms duty cycle and partial load in an intuitive fashion throughout
this section. A more formal definition of both quantities and their interpretation by
our load control tool is given in Section 3.

Download English Version:

https://daneshyari.com/en/article/4950231

Download Persian Version:

https://daneshyari.com/article/4950231

Daneshyari.com

https://daneshyari.com/en/article/4950231
https://daneshyari.com/article/4950231
https://daneshyari.com

