
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Self-managing cloud-native applications: Design, implementation,
and experience
Giovanni Toffetti ∗, Sandro Brunner, Martin Blöchlinger, Josef Spillner,
Thomas Michael Bohnert
Zurich University of Applied Sciences, School of Engineering, Service Prototyping Lab (blog.zhaw.ch/icclab/), 8401 Winterthur, Switzerland

h i g h l i g h t s

• A definition of cloud-native applications and their desired characteristics.
• A distributed architecture for self-managing (micro) services.
• A report on our experiences and lessons learnt applying the proposed architecture to a legacy application brought to the cloud.

a r t i c l e i n f o

Article history:
Received 30 November 2015
Received in revised form
30 June 2016
Accepted 3 September 2016
Available online xxxx

Keywords:
Micro services
Cloud-native applications
Container-based applications
Distributed systems
Auto-scaling
Health-management

a b s t r a c t

Running applications in the cloud efficiently requires much more than deploying software in virtual
machines. Cloud applications have to be continuously managed: (1) to adjust their resources to the
incoming load and (2) to face transient failures replicating and restarting components to provide resiliency
on unreliable infrastructure. Continuous managementmonitors application and infrastructural metrics to
provide automated and responsive reactions to failures (healthmanagement) and changing environmental
conditions (auto-scaling) minimizing human intervention.

In the current practice, management functionalities are provided as infrastructural or third party
services. In both cases they are external to the application deployment. We claim that this approach
has intrinsic limits, namely that separating management functionalities from the application prevents
them from naturally scaling with the application and requires additional management code and human
intervention. Moreover, using infrastructure provider services for management functionalities results in
vendor lock-in effectively preventing cloud applications to adapt and run on the most effective cloud for
the job.

In this paper we discuss the main characteristics of cloud native applications, propose a novel
architecture that enables scalable and resilient self-managing applications in the cloud, and relate on our
experience in porting a legacy application to the cloud applying cloud-native principles.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

After a phase drivenmainly by early adopters, cloud computing
is now being embraced by most companies. Not only new
applications are developed to be run in the cloud, but legacy
workloads are increasingly being adapted and transformed to
leverage the dominant cloud computing models. A suitable cloud
application design was published previously by the authors [1] in

∗ Corresponding author.
E-mail addresses: toff@zhaw.ch (G. Toffetti), brnr@zhaw.ch (S. Brunner),

bloe@zhaw.ch (M. Blöchlinger), spio@zhaw.ch (J. Spillner), bohe@zhaw.ch
(T.M. Bohnert).

the proceedings of the First InternationalWorkshop on Automated
Incident Management in the Cloud (AIMC’15). With respect to
that initial position paper, this article relates on our experience
implementing the design we propose with a specific set of
technologies and the evaluation of the non-functional behavior of
the implementation with respect to scalability and resilience.

There are several advantages in embracing the cloud, but in
essence they typically fall into two categories: either operational
(flexibility/speed) or economical (costs) reasons. From the former
perspective, cloud computing offers fast self-service provisioning
and task automation through application programming interfaces
(APIs) which allow to deploy and remove resources instantly,
reduce wait time for provisioning development/test/production
environments, enabling improved agility and time-to-market

http://dx.doi.org/10.1016/j.future.2016.09.002
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.09.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:toff@zhaw.ch
mailto:brnr@zhaw.ch
mailto:bloe@zhaw.ch
mailto:spio@zhaw.ch
mailto:bohe@zhaw.ch
http://dx.doi.org/10.1016/j.future.2016.09.002

2 G. Toffetti et al. / Future Generation Computer Systems () –

facing business changes. The bottom line is increased productivity.
From the economical perspective, the pay-per-use model means
that no upfront investment is needed for acquiring IT resources
or for maintaining them, as companies pay only for allocated
resources and subscribed services. Moreover, by handing off the
responsibility of maintaining physical IT infrastructure, companies
can avoid capital expenses (capex) in favor of usage-aligned
operational expenses (opex) and can focus on development rather
than operations support.

An extensive set of architectural patterns and best practices
for cloud application development have been distilled, see for
instance [2–4].

However, day-to-day cloud application development is still far
from fully embracing these patterns. Most companies have just
reached the point of adopting hardware virtualization (i.e., VMs).
Innovation leaders have already moved on to successfully deploy-
ing newer, more productive patterns, like microservices, based on
light-weight virtualization (i.e., containers).

On one hand, a pay-per-usemodel only brings cost savingswith
respect to a dedicated (statically sized) system solution if (1) an
application has varying load over time and (2) the application
provider is able to allocate the ‘‘right’’ amount of resources
to it, avoiding both over-provisioning (paying for unneeded
resources) and under-provisioning resulting in QoS degradation.
On the other hand, years of cloud development experience have
taught practitioners that commodity server hardware and network
switches break often. Failure domains help isolate problems,
but one should ‘‘plan for failure’’, striving to produce resilient
applications on unreliable infrastructure, without compromising
their elastic scalability.

In this article we relate on our experience in porting a legacy
Web application to the cloud, adopting a novel design pattern
for self-managing cloud native applications. This enables vendor
independence and reduced costs with respect to relying on
IaaS/PaaS and third party vendor services.

The main contributions of this article are: (1) a definition of
cloud-native applications and their desired characteristics, (2) a
distributed architecture for self-managing (micro) services, and
(3) a report on our experiences and lessons learnt applying the
proposed architecture to a legacy application brought to the cloud.

2. Cloud-native applications

Any application that runs on a cloud infrastructure is a ‘‘cloud
application’’, but a ‘‘cloud-native application’’ (CNA from here on)
is an application that has been specifically designed to run in a cloud
environment.

2.1. CNA: definitions and requirements

We can derive the salient characteristics of CNA from the main
aspects of the cloud computing paradigm. As defined in [5], there
are five essential characteristics of cloud computing: on-demand
self service, broad network access, resource pooling, rapid elasticity
and measured service. In actual practice the cloud infrastructure is
the enabler of these essential characteristics. Due to the economy
of scale, infrastructure installations are large and typically built
of commodity hardware so that failures are the norm rather than
the exception [6]. Finally, cloud applications often rely on third-
party services, as part of the application functionality, support
(e.g., monitoring) or both. Third-party services might also fail or
offer insufficient quality of service.

Given the considerations above, we can define the main re-
quirements of CNA as:

• Resilience: CNA have to anticipate failures and fluctuation
in quality of both cloud resources and third-party services
needed to implement an application to remain available during
outages. Resource pooling in the cloud implies that unexpected
fluctuations of the infrastructure performance (e.g., noisy
neighbor problem inmulti-tenant systems) need to be expected
and managed accordingly.

• Elasticity: CNA need to support adjusting their capacity by
adding or removing resources to provide the required QoS in
face of load variation avoiding over- and under-provisioning.
In other terms, cloud-native applications should take full
advantage of the cloud being a measured service offering on-
demand self-service and rapid elasticity.

It should be clear that resilience is the first goal to be attained to
achieve a functioning and available application in the cloud, while
scalability dealswith load variation and operational cost reduction.
Resilience in the cloud is typically addressed using redundant
resources. Formulating the trade-off between redundancy and
operational cost reduction is a business decision.

The principles identified in the ‘‘12 factor app’’ methodology [7]
focus not only on several aspects that impact on resiliency and scal-
ability (e.g., dependencies, configuration in environment, backing
services as attached resources, stateless processes, port-binding,
concurrency via process model, disposability) ofWeb applications,
but also the more general development and operations process
(e.g., one codebase, build-release-run, dev/prod parity, administra-
tive processes). Many of the best practices in current cloud devel-
opment stem from these principles.

2.2. Current state of cloud development practice

Cloud computing is novel and economically more viable with
respect to traditional enterprise-grade systems also because it
relies on self-managed software automation (restarting compo-
nents) rather than more expensive hardware redundancy to pro-
vide resilience and availability on top of commodity hardware [8].
However, many applications deployed in the cloud today are sim-
ply legacy applications that have been placed in VMs without
changes of architecture or assumptions on the underlying infras-
tructure. Failing to adjust cost, performance and complexity expec-
tations, and assuming the same reliability of resources and services
in a traditional data center as in a public cloud can cost dearly, both
in terms of technical failure and economical loss.

In order to achieve resilience and scalability, cloud applications
have to be continuously monitored, analyzing their application-
specific and infrastructural metrics to provide automated and re-
sponsive reactions to failures (health management functionality)
and changing environmental conditions (auto-scaling functional-
ity), minimizing human intervention.

The current state of the art in monitoring, health management,
and scaling consists of one of the following options: (a) using ser-
vices from the infrastructure provider (e.g., Amazon CloudWatch1

and Auto Scaling2 or Google Instance Group Manager3) with a de-
fault or a custom provided policy, (b) leveraging a third-party ser-
vice (e.g., Rightscale,4 New Relic5), (c) building an ad-hoc solution
using available components (e.g., Netflix Scryer,6 logstash7). Both

1 https://aws.amazon.com/cloudwatch.
2 https://aws.amazon.com/autoscaling.
3 https://cloud.google.com/compute/docs/autoscaler.
4 http://www.rightscale.com.
5 https://newrelic.com.
6 http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-

scaling.html.
7 https://www.elastic.co/products/logstash.

https://aws.amazon.com/cloudwatch
https://aws.amazon.com/autoscaling
https://cloud.google.com/compute/docs/autoscaler
http://www.rightscale.com
https://newrelic.com
http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html
http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html
https://www.elastic.co/products/logstash

Download English Version:

https://daneshyari.com/en/article/4950237

Download Persian Version:

https://daneshyari.com/article/4950237

Daneshyari.com

https://daneshyari.com/en/article/4950237
https://daneshyari.com/article/4950237
https://daneshyari.com

