
Future Generation Computer Systems 72 (2017) 264–272

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A hybrid index for temporal big data
Mei Wang a, Meng Xiao a, Sancheng Peng b,c,∗, Guohua Liu a

a School of Computer Science and Technology, Donghua University, Shanghai, 201620, PR China
b School of Informatics, Guangdong University of Foreign Studies, Guangzhou, Guangdong Province, 510420, PR China
c Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou, Guangdong Province, 510420, PR China

h i g h l i g h t s

• A novel segmentation hybrid index SHB+-Tree for temporal big data is proposed.
• The proposed index integrates the advantages of temporal index and object index.
• The segmented storage strategy is proposed.
• The bottom-up index construction approach is provided.
• The experiments are conducted to verify the effectiveness of the proposed method.

a r t i c l e i n f o

Article history:
Received 15 November 2015
Received in revised form
14 May 2016
Accepted 6 August 2016
Available online 26 August 2016

Keywords:
Big data
Temporal database
Temporal index
SHB+-Tree index
Segmented storage

a b s t r a c t

Temporal index provides an important way to accelerate query performance in temporal big data.
However, the current temporal index cannot support the variety of queries verywell, and it is hard to take
account of the efficiency of query execution as well as the index construction and maintenance. In this
paper, we propose a novel segmentation-based hybrid index B+-Tree, called SHB+- tree, for temporal big
data. First, the temporal data in temporal table deposited is separated to fragments according to the time
order. In each segment, the hybrid index is constructed by integrating the temporal index and the object
index, and the temporal big data is shared by them. The performance of construction and maintenance is
improved by employing the segmented storage strategy and bottom-up index construction approaches
for every part of the hybrid index. The experimental results on benchmark data set verify the effectiveness
and efficiency of the proposed method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the era where data are being produced over time and shared
in an unprecedented pace, mining the information in the big data
has become increasingly crucial. Temporal information is the nat-
ural and basic description for the development and changes of
real-world objects, and almost everything has explicit or implicit
temporal features. While the traditional snapshot databases al-
ways record the information in a given specific time, it is difficult
to reflect the dynamic changes of real world sufficiently and accu-
rately. It is becoming increasingly urgent for the management and
retrieval of temporal big data in most modern database systems.

Temporal big data management has already attracted wide
concerns in both academic and industrial fields. Tang [1] proposed

∗ Corresponding author.
E-mail address: psc346@aliyun.com (S. Peng).

the concept of bi-temporal data at an earlier time. In this work,
each tuple of the temporal table carries two time intervals
[start t , endt ] and [startv, endv], representing transaction time and
valid time (a.k.a system time and application time, respectively).
He also proposed to take time interval as a key, which makes
a breakthrough in traditional databases which only take digit
or character as a key. In this basis, many temporal database
prototypes have been implemented, such as TimeDB [2] and
TempDB [3]. Under the impetus of the above research and real
applications, ISO/IEC published the edition of the SQL standard
in December 2011, SQL: 2011 [4,5], which includes an important
functionality to create and manipulate temporal tables. In the
meantime, many popular commercial databases such as Oracle [6],
IBM DB2 [7], SAP HANA [8] also include temporal features. With
the developments of temporal databases, some key technologies in
the traditional databases have been re-examined. As an important
way to accelerate query performance, index has received great
attentions. Some index structures have been proposed to support

http://dx.doi.org/10.1016/j.future.2016.08.002
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.08.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.08.002&domain=pdf
mailto:psc346@aliyun.com
http://dx.doi.org/10.1016/j.future.2016.08.002


M. Wang et al. / Future Generation Computer Systems 72 (2017) 264–272 265

different temporal query operations such as temporal join [9,10],
temporal aggregation [11,12] and time travel [13].

The existing temporal index technologies are always the
extensions of traditional B+-Tree or R Tree. The Time index [14]
is one of the earliest temporal indexing methods, which maps
temporal relation to a multi-dimensional space. So the popular
index such as B-tree can be readily adopted to support temporal
operations. However, such kind of methods suffer low efficiency
when data size increases. As data size reached TB or PB level,
the cost of index construction and maintenance is extremely
expensive. In addition, almost every method does not support
all types of temporal operations and these methods do not work
efficiently on modern hardware and architectures. In the latest
study, SAP HANA proposed a novel index structure called Timeline
index [15]. The Timeline index can support different kinds of
temporal operations as well as is easy to be constructed and
maintained by adopting the simple sequential structure. However,
when using the Timeline index to process a query, it needs to do a
linear scan of the index table. When the data size becomes large,
the cost of continual linear scan is very expensive.

More importantly, in the current temporal big data manage-
ment, the proposed index structures are always only built on the
temporal attributes, which means they focus on fast query search
like ‘‘what happened in a given time period’’ (denoted as tempo-
ral query). However, for many practical applications, users also
pay close attention to the objects that they are interested in, in
this case the query is likely as ‘‘what the given object happened’’
(denoted as object query) or in themore complex case, the query is
likely as ‘‘What the givenobject happened in the given timeperiod’’
(denoted as complex query). For the last two kinds of queries, it is
difficult to avoid the linear scanning of the whole records in the
process of query execution for the current temporal index struc-
tures. Although by building a traditional secondary index can re-
ply ‘‘what the given object happened’’ more efficiently, the cost of
update for the secondary index is very huge as the objects change
over time.

To deal with the above problems, in this paper, we propose a
novel segmentation hybrid index for dealing temporal big data.
In the proposed method, the temporal big data is divided into
segments by chronological order firstly, and then in each segment
the local hybrid structure with temporal index and object index
is created where both indexes share the same local segment
data. Furthermore, the bottom-up index construction approach is
incorporated in the proposedmethod to improve the performances
of construction and maintenance of the index structure. Our
contributions are summarized as follows:

• A hybrid index structure is proposed for the temporal data
table. The query methods base on the proposed index are also
provided in the paper. The proposed index structure readily
incorporates the advantages of both temporal index and object
index. As a result, it couldmeet the diverse needs of users’ query
more effectively compared with the previous methods.

• By segmenting the temporal big data in advance, our index
is built on each local data segment, which greatly reduces
the time of index construction and maintenance. Such process
could be further speed up by parallel execution architectures.
Combined with the bottom-up construction approach, the
performances of construction and maintenance of the index
have been improved significantly.

• The experiments have been conducted on benchmark data
sets verify the effectiveness and the efficiency of the proposed
method. Specifically, the SHB+-Tree (SegmentationHybrid B+-
Tree) index performs excellent in complex query, the cost of
query time for the SHB+-Tree is reduced to 10% of the Timeline
index.

The remainder of this paper is organized as follows. Section 2
gives an overview of existing work on temporal data management
and temporal index technologies. Section 3 presents the SHB+-
Tree index. Section 4 describes SHB+-Tree and the algorithms on
how to process different kinds of temporal operators using the
SHB+-Tree in detail. Section 5 provides the experimental results.
Finally, we conclude this paper and suggest our future work in
Section 6.

2. Related work

In this section, we investigate relatedwork in three dimensions.
The first dimension is the traditional database and index; the
second is related to the temporal indexing technology; and the last
is related to the temporal operations.

2.1. Traditional database and index

Traditional relational database is attribute–tuple two-
dimensional structure [16], it is suitable for processing the per-
manent stability data. However, it is important to know that the
traditional databases only save a snapshot instead of the complete
history. The snapshot cannot reflect the historical changes of the
objects, and it is hard to meet the real-time requirements for the
industrial applications. Temporal database is a DBMS which sup-
ports time dimension. The Temporal DB can describe not only the
information at some point, but also the history and future of the
data. An important direction of work is how tomodel and organize
temporal data. Index technology is one of the key technologies to
improve the query efficiency of mass data, and the research of in-
dex has attracted great attentions in recent years.

Traditional databases have rules to create effective indexes.
First, create an index on the column that is joined in queries
frequently, and not a foreign key. Second, create an index on the
column which is used to sort or group frequently. Third, create
an index on the column that is used in the conditional expression
frequently and has more different values. For this reason, the
traditional index can support the query such as what the object do
very well. However, as time goes on, there are constant updates
on the temporal database, which makes the cost of update and
maintenance of the index very expensive. Therefore, a large body
of researches on indexes created on the temporal attribute has
established.

2.2. Temporal indexing technology

In order to accelerate query performance in temporal database,
various algorithms and data structures have been proposed
for different temporal data models. Since most of these index
structures were developed in the mid-to-late ’90s, they are
designed for hard-disk efficiency, optimizing the number of I/O
operations for updates and queries. The Time index [14] is
one of the earliest temporal indexing methods. Technically, the
Time index is a B+-Tree over versions, and provides explicit
support for multiple temporal operations. The multi-version B-
tree [17] is one of the most advanced temporal indexing methods.
It provides an index for both key- and time-dimensions with
optimal I/O behavior. Temporal XML has also attracted more and
more attention in recent researchers. The temporal XML indexing
method TXSIM [18] based on suffix tree is proposed. The Timeline
index [15] was proposed by SAP HANA [5] for processing different
kinds of temporal queries on temporal data. SAP HANA is a
commercial database system which employs both a column store
and a row store for in-memory data processing. Basic support
for temporal data is already available natively in HANA. The
bitemporal Timeline index [19] is also proposed for processing



Download English Version:

https://daneshyari.com/en/article/4950246

Download Persian Version:

https://daneshyari.com/article/4950246

Daneshyari.com

https://daneshyari.com/en/article/4950246
https://daneshyari.com/article/4950246
https://daneshyari.com

