
Future Generation Computer Systems 78 (2018) 245–256

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Competitive analysis of fundamental scheduling algorithms on a
fault-prone machine and the impact of resource augmentation
Antonio Fernández Anta a, Chryssis Georgiou b, Dariusz R. Kowalski c, Elli Zavou a,d,∗

a IMDEA Networks Institute, Av. del Mar Mediterráneo 22, 28918 Leganés, Madrid, Spain
b University of Cyprus, Department of Computer Science, 75 Kallipoleos Str., P.O. Box 20537, 1678 Nicosia, Cyprus
c University of Liverpool, Department of Computer Science, Ashton Building, Ashton Street, Liverpool L69 3BX, United Kingdom
d University Carlos III of Madrid, Department of Telematics Engineering, Torres Quevedo Building, Av. Universidad 30, 28911 Leganés, Madrid, Spain

h i g h l i g h t s

• Worst-case analysis of fault-tolerant properties of popular scheduling algorithms.
• Competitive analysis regarding completed/pending load and latency of the algorithms.
• Use of resource augmentation to achieve and/or to improve their performance.
• Differences of scheduling policies based either on arrival time or size of tasks.
• All deterministic and work-conserving algorithms require speedup to be competitive.

a r t i c l e i n f o

Article history:
Received 11 November 2015
Received in revised form
27 May 2016
Accepted 29 May 2016
Available online 6 June 2016

Keywords:
Scheduling
Online algorithms
Different task processing times
Failures
Competitive analysis
Resource augmentation

a b s t r a c t

Reliable task execution in machines that are prone to unpredictable crashes and restarts is both chal-
lenging and of high importance, but not much work exists on the analysis of such systems. We consider
the online version of the problem, with tasks arriving over time at a single machine under worst-case
assumptions. We analyze the fault-tolerant properties of four popular scheduling algorithms: Longest In
System (LIS), Shortest In System (SIS), Largest Processing Time (LPT) and Shortest Processing Time (SPT).
We use three metrics for the evaluation and comparison of their competitive performance, namely, com-
pleted load, pending load and latency. We also investigate the effect of resource augmentation in their
performance, by increasing the speed of the machine. Hence, we compare the behavior of the algorithms
for different speed intervals and show that there is no clear winner with respect to all the three consid-
ered metrics. While SPT is the only algorithm that achieves competitiveness on completed load for small
speed, LIS is the only one that achieves competitiveness on latency (for large enough speed).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Motivation. The demand for processing dynamically introduced
jobs that require high computational power has been increasing
dramatically during the last decades, and so has the research to
face themany challenges it presents. In addition, with the presence
of machine failures (and restarts), which in cloud computing is
now the norm instead of the exception, things get even worse.

∗ Corresponding author at: IMDEA Networks Institute, Av. del Mar Mediterráneo
22, 28918 Leganés, Madrid, Spain.

E-mail addresses: antonio.fernandez@imdea.org (A. Fernández Anta),
chryssis@cs.ucy.ac.cy (C. Georgiou), D.Kowalski@liverpool.ac.uk (D.R. Kowalski),
elli.zavou@imdea.org (E. Zavou).

In this work, we apply speed augmentation [1,2] (i.e., we increase
the computational power of the system’s machine) in order to
overcome such failures, even in the worst possible scenario. This
is an alternative to increasing the number of processing entities,
as done in multiprocessor systems. Hence, we consider a speedup
s ≥ 1, under which the machine performs a job s times faster than
the baseline execution time.

More precisely, we consider a setting with a single machine
prone to crashes and restarts being controlled by an adversary
(modeling worst-case scenarios), and a scheduler that assigns
injected jobs or tasks to be executed by the machine. These tasks
arrive continuously and have different computational demands
and hence size (or processing time). Specifically we assume that
each task τ has size π(τ) ∈ [πmin, πmax], where πmin and πmax
are the smallest and largest possible values respectively, and

http://dx.doi.org/10.1016/j.future.2016.05.042
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.05.042
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.05.042&domain=pdf
mailto:antonio.fernandez@imdea.org
mailto:chryssis@cs.ucy.ac.cy
mailto:D.Kowalski@liverpool.ac.uk
mailto:elli.zavou@imdea.org
http://dx.doi.org/10.1016/j.future.2016.05.042


246 A. Fernández Anta et al. / Future Generation Computer Systems 78 (2018) 245–256

π(τ) becomes known to the system at the moment of τ ’s arrival.
Since the scheduling decisions must be made continuously and
without knowledge of the future (neither of the task injections
nor of the machine crashes and restarts), we look at the problem
as an online scheduling problem [3–7]. The importance of using
speedup lies in this online nature of the problem; the future
failures, and the instants of arrival of future tasks along with
their sizes, are unpredictable. Thus, there is the need to overcome
this lack of information. Epstein et al. [8], specifically show
the impossibility of competitiveness in a simple non-preemptive
scenario (see Example 2 in [8]).We evaluate the performance of the
different scheduling policies (online algorithms) under worst-case
scenarios, on amachinewith speedup s, which guarantees efficient
scheduling even in the worst of cases. For that, we perform
competitive analysis [9]. The four scheduling policies we consider
are Longest In System (LIS), Shortest In System (SIS), Largest
Processing Time (LPT) and Shortest Processing Time (SPT). Scheduling
policies LIS and SIS are the popular FIFO and LIFO policies
respectively. Graham [10] introduced the scheduling policy LPT
a long time ago, when analyzing multiprocessor scheduling.
Lee et al. [11] studied the offline problem of minimizing the
sum of flow times in one machine with a single breakdown,
and gave tight worst-case error bounds on the performance
of SPT. Achieving reliable and stable computations in such an
environment withholds several challenges. One of our main goals
is therefore to confront these challenges considering the use of
the smallest possible speedup. However, our primary intention
is to unfold the relationship between the efficiency measures we
consider for each scheduling policy, and the amount of speed
augmentation used.
Contributions. In this paper we explore the behavior of some of
the most widely used algorithms in scheduling, analyzing their
fault-tolerant properties under worst-case combination of task
injection and crash/restart patterns, as described above. The four
algorithms we consider are:

(1) Longest In System (LIS): the task that has been waiting the
longest is scheduled; i.e., it follows the FIFO (First In First Out)
policy,

(2) Shortest In System (SIS): the task that has been injected the
latest is scheduled; i.e., it follows the LIFO (Last In First Out)
policy,

(3) Largest Processing Time (LPT): the task with the biggest size is
scheduled, and

(4) Shortest Processing Time (SPT): the task with the smallest size
is scheduled.

We focus on three evaluation metrics, which we regard to
embody the most important quality-of-service parameters: the
completed load, which is the aggregate size of all the tasks that have
completed their execution successfully, the pending load, which is
the aggregate size of all the tasks that are in the queue waiting
to be completed, and the latency, which is the largest time a task
spends in the system, from the time of its arrival until it is fully
executed. Latency, is also referred to as flowtime in scheduling
(e.g., [12,13]). These metrics represent the machine’s throughput,
queue size and delay respectively, all of which we consider
essential. They show how efficient the scheduling algorithms are
in a fault-prone setting from different angles: machine utilization
(completed load), buffering (pending load) and fairness (latency).
The performance of an algorithm ALG is evaluated under these
three metrics bymeans of competitive analysis, in which the value
of the metric achieved by ALG when the machine uses speedup
s ≥ 1 is compared with the best value achieved by any algorithm
X running without speedup (s = 1) under the same pattern of task
arrivals and machine failures, at all time instants of an execution.

Table 1 summarizes the results we have obtained for the four
algorithms. The first results we show apply to all deterministic

algorithms and all work-conserving algorithms—algorithms that do
not idle while there are pending tasks and they do not break the
execution of a task unless the machine crashes. We show that, if
task sizes are arbitrary, these algorithms cannot be competitive
when processors have no resource augmentation (s = 1), thus
justifying the need of the speedup. Then, for work-conserving
algorithmswe show the following results: (a)When s ≥ ρ =

πmax
πmin

,
the completed load competitive ratio is lower bounded by 1/ρ
and the pending load competitive ratio is upper bounded by ρ. (b)
When s ≥ 1 + ρ, the completed load competitive ratio is lower
bounded by 1 and the pending load competitive ratio is upper
bounded by 1 (i.e., they are 1-competitive). Then, for specific cases
of speedup less than1+ρ weobtain better lower andupper bounds
for the different algorithms.

However, it is clear that none of the algorithms is better than
the rest. With the exception of SPT, no algorithm is competitive
in any of the three metrics considered when s < ρ. In particular,
algorithm SPT is competitive in terms of completed load when
tasks have only two possible sizes. In terms of latency, only
algorithm LIS is competitive, when s ≥ ρ, which might not be
very surprising since algorithm LIS gives priority to the tasks that
have been waiting the longest in the system. Another interesting
observation is that algorithms LPT and SPT become 1-competitive
as soon as s ≥ ρ, both in terms of completed and pending load,
whereas LIS and SIS require greater speedup to achieve this.

This is the first thorough and rigorous online analysis of these
popular scheduling algorithms in a fault-prone setting. In some
sense, our results demonstrate in a clear way the differences
between two classes of policies: the ones that give priority based
on the arrival time of the tasks in the system (LIS and SIS) and
the ones that give priority based on the required processing time
of the tasks (LPT and SPT). Observe that different algorithms scale
differently with respect to the speedup, in the sense that with
the increase of the machine speed the competitive performance of
each algorithm changes in a different way.
Related work. We relate our work to the online version of the bin
packing problem [15], where the objects to be packed are the tasks
and the bins are the time periods between two consecutive failures
of the machine (i.e., alive intervals). Over the years, extensive
research on this problem has been done, some of which we
consider related to ours. For example, Johnson et al. [16] analyze
the worst-case performance of two simple algorithms (Best Fit
and Next Fit) for the bin packing problem, giving upper bounds
on the number of bins needed (corresponding to the completed
time in our work). Epstein et al. [17] (see also [15]) considered
online bin packing with resource augmentation in the size of the
bins (corresponding to the length of alive intervals in our work).
Observe that the essential difference of the online bin packing
problemwith the one that we are looking at in this work, is that in
our system the bins and their sizes (corresponding to themachine’s
alive intervals) are unknown. Boyar and Ellen [18] have looked into
a problem similar to both the online bin packing problem and ours,
considering job scheduling in the grid. The main difference with
our setting is that they consider several machines (or processors),
but mainly the fact that the arriving items are processors with
limited memory capacities and there is a fixed amount of jobs in
the system that must be completed. They also use fixed job sizes
and achieve lower and upper bounds that only depend on the
fraction of such jobs in the system.

Another related problem is packet scheduling in a link.
Andrews and Zhang [19] consider online packet scheduling over
a wireless channel whose rate varies dynamically, and perform
worst-case analysis regarding both the channel conditions and
the packet arrivals. We can also directly relate our work to
research done onmachine scheduling with availability constraints
(e.g., [20,21]). One of the most important results in that area



Download English Version:

https://daneshyari.com/en/article/4950274

Download Persian Version:

https://daneshyari.com/article/4950274

Daneshyari.com

https://daneshyari.com/en/article/4950274
https://daneshyari.com/article/4950274
https://daneshyari.com

